mirror of https://github.com/m-labs/artiq.git
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
from math import sqrt, cos, pi
|
|
import time
|
|
import random
|
|
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
|
|
from artiq import *
|
|
|
|
|
|
def model(x, F0):
|
|
t = 0.02
|
|
tpi = 0.03
|
|
A = 80
|
|
B = 40
|
|
return A+(B-A)/2/(4*tpi**2*(x-F0)**2+1)*(1-cos(pi*t/tpi*sqrt(4*tpi**2*(x-F0)**2+1)))
|
|
|
|
|
|
def model_numpy(xdata, F0):
|
|
r = np.zeros(len(xdata))
|
|
for i, x in enumerate(xdata):
|
|
r[i] = model(x, F0)
|
|
return r
|
|
|
|
|
|
class FloppingF(EnvExperiment):
|
|
"""Flopping F simulation"""
|
|
|
|
def build(self):
|
|
self.attr_argument("frequency_scan", Scannable(
|
|
default=LinearScan(1000, 2000, 100)))
|
|
|
|
self.attr_argument("F0", NumberValue(1500, min=1000, max=2000))
|
|
self.attr_argument("noise_amplitude", NumberValue(0.1, min=0, max=100,
|
|
step=0.01))
|
|
|
|
self.attr_device("scheduler")
|
|
|
|
def run(self):
|
|
self.frequency = self.set_result("flopping_f_frequency", [],
|
|
realtime=True, store=False)
|
|
self.brightness = self.set_result("flopping_f_brightness", [],
|
|
realtime=True)
|
|
self.set_result("flopping_f_fit", [], realtime=True, store=False)
|
|
|
|
for frequency in self.frequency_scan:
|
|
brightness = model(frequency, self.F0) + self.noise_amplitude*random.random()
|
|
self.frequency.append(frequency)
|
|
self.brightness.append(brightness)
|
|
time.sleep(0.1)
|
|
self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid,
|
|
self.scheduler.priority, time.time() + 20, False)
|
|
|
|
def analyze(self):
|
|
# Use get_result so that analyze can be run stand-alone.
|
|
frequency = self.get_result("flopping_f_frequency")
|
|
brightness = self.get_result("flopping_f_brightness")
|
|
popt, pcov = curve_fit(model_numpy,
|
|
frequency, brightness,
|
|
p0=[self.get_parameter("flopping_freq")])
|
|
perr = np.sqrt(np.diag(pcov))
|
|
if perr < 0.1:
|
|
F0 = float(popt)
|
|
self.set_parameter("flopping_freq", F0)
|
|
self.set_result("flopping_f_fit",
|
|
[model(x, F0) for x in frequency],
|
|
realtime=True, store=False)
|