import numpy as np from numba import jit from scipy.optimize import least_squares import logging logger = logging.getLogger(__name__) @jit(nopython=True) def compute_gaussian(r, img_w, img_h, gaussian_w, gaussian_h, gaussian_cx, gaussian_cy): for y in range(img_h): for x in range(img_w): ds = ((gaussian_cx-x)/gaussian_w)**2 ds += ((gaussian_cy-y)/gaussian_h)**2 r[x, y] = np.exp(-ds/2) def fit(data, get_dataset): img_w, img_h = data.shape def err(parameters): r = np.empty((img_w, img_h)) compute_gaussian(r, img_w, img_h, *parameters) r -= data return r.ravel() guess = [ get_dataset("rexec_demo.gaussian_w", 12), get_dataset("rexec_demo.gaussian_h", 15), get_dataset("rexec_demo.gaussian_cx", img_w/2), get_dataset("rexec_demo.gaussian_cy", img_h/2) ] res = least_squares(err, guess) return res.x def get_and_fit(): if "dataset_db" in globals(): logger.info("using dataset DB for Gaussian fit guess") def get_dataset(name, default): try: return dataset_db.get(name) except KeyError: return default else: logger.info("using defaults for Gaussian fit guess") def get_dataset(name, default): return default get_dataset = lambda name, default: default return fit(controller_driver.get_picture(), get_dataset)