from math import sqrt, cos, pi import time import random import numpy as np from scipy.optimize import curve_fit from artiq import * def model(x, F0): t = 0.02 tpi = 0.03 A = 80 B = 40 return A+(B-A)/2/(4*tpi**2*(x-F0)**2+1)*(1-cos(pi*t/tpi*sqrt(4*tpi**2*(x-F0)**2+1))) def model_numpy(xdata, F0): r = np.zeros(len(xdata)) for i, x in enumerate(xdata): r[i] = model(x, F0) return r class FloppingF(EnvExperiment): """Flopping F simulation""" def build(self): self.attr_argument("frequency_scan", Scannable( default=LinearScan(1000, 2000, 100))) self.attr_argument("F0", NumberValue(1500, min=1000, max=2000)) self.attr_argument("noise_amplitude", NumberValue(0.1, min=0, max=100)) self.frequency = self.set_result("flopping_f_frequency", [], True) self.brightness = self.set_result("flopping_f_brightness", [], True) self.attr_device("scheduler") def run(self): for frequency in self.frequency_scan: brightness = model(frequency, self.F0) + self.noise_amplitude*random.random() self.frequency.append(frequency) self.brightness.append(brightness) time.sleep(0.1) self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid, self.scheduler.priority, time.time() + 20, False) def analyze(self): popt, pcov = curve_fit(model_numpy, self.frequency.read, self.brightness.read, p0=[self.get_parameter("flopping_freq")]) perr = np.sqrt(np.diag(pcov)) if perr < 0.1: self.set_parameter("flopping_freq", float(popt))