""" The :class:`Stitcher` class allows to transparently combine compiled Python code and Python code executed on the host system: it resolves the references to the host objects and translates the functions annotated as ``@kernel`` when they are referenced. """ import sys, os, re, linecache, inspect, textwrap, types as pytypes, numpy from collections import OrderedDict, defaultdict from pythonparser import ast, algorithm, source, diagnostic, parse_buffer from pythonparser import lexer as source_lexer, parser as source_parser from Levenshtein import ratio as similarity, jaro_winkler from ..language import core as language_core from . import types, builtins, asttyped, math_fns, prelude from .transforms import ASTTypedRewriter, Inferencer, IntMonomorphizer, TypedtreePrinter from .transforms.asttyped_rewriter import LocalExtractor class SpecializedFunction: def __init__(self, instance_type, host_function): self.instance_type = instance_type self.host_function = host_function def __eq__(self, other): if isinstance(other, tuple): return (self.instance_type == other[0] or self.host_function == other[1]) else: return (self.instance_type == other.instance_type or self.host_function == other.host_function) def __ne__(self, other): return not self == other def __hash__(self): return hash((self.instance_type, self.host_function)) class EmbeddingMap: def __init__(self): self.object_current_key = 0 self.object_forward_map = {} self.object_reverse_map = {} self.module_map = {} self.type_map = {} self.function_map = {} # Modules def store_module(self, module, module_type): self.module_map[module] = module_type def retrieve_module(self, module): return self.module_map[module] def has_module(self, module): return module in self.module_map # Types def store_type(self, host_type, instance_type, constructor_type): self._rename_type(instance_type) self.type_map[host_type] = (instance_type, constructor_type) def retrieve_type(self, host_type): return self.type_map[host_type] def has_type(self, host_type): return host_type in self.type_map def _rename_type(self, new_instance_type): # Generally, user-defined types that have exact same name (which is to say, classes # defined inside functions) do not pose a problem to the compiler. The two places which # cannot handle this are: # 1. {TInstance,TConstructor}.__hash__ # 2. LLVM type names # Since handling #2 requires renaming on ARTIQ side anyway, it's more straightforward # to do it once when embedding (since non-embedded code cannot define classes in # functions). Also, easier to debug. n = 0 for host_type in self.type_map: instance_type, constructor_type = self.type_map[host_type] if instance_type.name == new_instance_type.name: n += 1 new_instance_type.name = "{}.{}".format(new_instance_type.name, n) def attribute_count(self): count = 0 for host_type in self.type_map: instance_type, constructor_type = self.type_map[host_type] count += len(instance_type.attributes) count += len(constructor_type.attributes) return count # Functions def store_function(self, function, ir_function_name): self.function_map[function] = ir_function_name def retrieve_function(self, function): return self.function_map[function] def specialize_function(self, instance_type, host_function): return SpecializedFunction(instance_type, host_function) # Objects def store_object(self, obj_ref): obj_id = id(obj_ref) if obj_id in self.object_reverse_map: return self.object_reverse_map[obj_id] self.object_current_key += 1 self.object_forward_map[self.object_current_key] = obj_ref self.object_reverse_map[obj_id] = self.object_current_key return self.object_current_key def retrieve_object(self, obj_key): return self.object_forward_map[obj_key] def iter_objects(self): for obj_id in self.object_forward_map.keys(): obj_ref = self.object_forward_map[obj_id] if isinstance(obj_ref, (pytypes.FunctionType, pytypes.MethodType, pytypes.BuiltinFunctionType, pytypes.ModuleType, SpecializedFunction)): continue elif isinstance(obj_ref, type): _, obj_typ = self.type_map[obj_ref] else: obj_typ, _ = self.type_map[type(obj_ref)] yield obj_id, obj_ref, obj_typ def has_rpc(self): return any(filter(lambda x: inspect.isfunction(x) or inspect.ismethod(x), self.object_forward_map.values())) class ASTSynthesizer: def __init__(self, embedding_map, value_map, quote_function=None, expanded_from=None): self.source = "" self.source_buffer = source.Buffer(self.source, "") self.embedding_map = embedding_map self.value_map = value_map self.quote_function = quote_function self.expanded_from = expanded_from self.diagnostics = [] def finalize(self): self.source_buffer.source = self.source return self.source_buffer def _add(self, fragment): range_from = len(self.source) self.source += fragment range_to = len(self.source) return source.Range(self.source_buffer, range_from, range_to, expanded_from=self.expanded_from) def quote(self, value): """Construct an AST fragment equal to `value`.""" if value is None: typ = builtins.TNone() return asttyped.NameConstantT(value=value, type=typ, loc=self._add(repr(value))) elif isinstance(value, (bool, numpy.bool_)): typ = builtins.TBool() coerced = bool(value) return asttyped.NameConstantT(value=coerced, type=typ, loc=self._add(repr(coerced))) elif value is numpy.float: typ = builtins.fn_float() return asttyped.NameConstantT(value=None, type=typ, loc=self._add("numpy.float")) elif value is numpy.int32: typ = builtins.fn_int32() return asttyped.NameConstantT(value=None, type=typ, loc=self._add("numpy.int32")) elif value is numpy.int64: typ = builtins.fn_int64() return asttyped.NameConstantT(value=None, type=typ, loc=self._add("numpy.int64")) elif value is numpy.array: typ = builtins.fn_array() return asttyped.NameConstantT(value=None, type=typ, loc=self._add("numpy.array")) elif value is numpy.full: typ = builtins.fn_make_array() return asttyped.NameConstantT(value=None, type=typ, loc=self._add("numpy.full")) elif isinstance(value, (int, float)): if isinstance(value, int): typ = builtins.TInt() elif isinstance(value, float): typ = builtins.TFloat() return asttyped.NumT(n=value, ctx=None, type=typ, loc=self._add(repr(value))) elif isinstance(value, numpy.int32): typ = builtins.TInt32() return asttyped.NumT(n=int(value), ctx=None, type=typ, loc=self._add(repr(value))) elif isinstance(value, numpy.int64): typ = builtins.TInt64() return asttyped.NumT(n=int(value), ctx=None, type=typ, loc=self._add(repr(value))) elif isinstance(value, str): return asttyped.StrT(s=value, ctx=None, type=builtins.TStr(), loc=self._add(repr(value))) elif isinstance(value, bytes): return asttyped.StrT(s=value, ctx=None, type=builtins.TBytes(), loc=self._add(repr(value))) elif isinstance(value, bytearray): quote_loc = self._add('`') repr_loc = self._add(repr(value)) unquote_loc = self._add('`') loc = quote_loc.join(unquote_loc) return asttyped.QuoteT(value=value, type=builtins.TByteArray(), loc=loc) elif isinstance(value, list): begin_loc = self._add("[") elts = [] for index, elt in enumerate(value): elts.append(self.quote(elt)) if index < len(value) - 1: self._add(", ") end_loc = self._add("]") return asttyped.ListT(elts=elts, ctx=None, type=builtins.TList(), begin_loc=begin_loc, end_loc=end_loc, loc=begin_loc.join(end_loc)) elif isinstance(value, tuple): begin_loc = self._add("(") elts = [] for index, elt in enumerate(value): elts.append(self.quote(elt)) self._add(", ") end_loc = self._add(")") return asttyped.TupleT(elts=elts, ctx=None, type=types.TTuple([e.type for e in elts]), begin_loc=begin_loc, end_loc=end_loc, loc=begin_loc.join(end_loc)) elif isinstance(value, numpy.ndarray): return self.call(numpy.array, [list(value)], {}) elif inspect.isfunction(value) or inspect.ismethod(value) or \ isinstance(value, pytypes.BuiltinFunctionType) or \ isinstance(value, SpecializedFunction) or \ isinstance(value, numpy.ufunc): if inspect.ismethod(value): quoted_self = self.quote(value.__self__) function_type = self.quote_function(value.__func__, self.expanded_from) method_type = types.TMethod(quoted_self.type, function_type) dot_loc = self._add('.') name_loc = self._add(value.__func__.__name__) loc = quoted_self.loc.join(name_loc) return asttyped.QuoteT(value=value, type=method_type, self_loc=quoted_self.loc, loc=loc) else: # function function_type = self.quote_function(value, self.expanded_from) quote_loc = self._add('`') repr_loc = self._add(repr(value)) unquote_loc = self._add('`') loc = quote_loc.join(unquote_loc) return asttyped.QuoteT(value=value, type=function_type, loc=loc) elif isinstance(value, pytypes.ModuleType): if self.embedding_map.has_module(value): module_type = self.embedding_map.retrieve_module(value) else: module_type = types.TModule(value.__name__, OrderedDict()) module_type.attributes['__objectid__'] = builtins.TInt32() self.embedding_map.store_module(value, module_type) quote_loc = self._add('`') repr_loc = self._add(repr(value)) unquote_loc = self._add('`') loc = quote_loc.join(unquote_loc) self.value_map[module_type].append((value, loc)) return asttyped.QuoteT(value=value, type=module_type, loc=loc) else: quote_loc = self._add('`') repr_loc = self._add(repr(value)) unquote_loc = self._add('`') loc = quote_loc.join(unquote_loc) if isinstance(value, type): typ = value else: typ = type(value) if self.embedding_map.has_type(typ): instance_type, constructor_type = self.embedding_map.retrieve_type(typ) if hasattr(value, 'kernel_invariants') and \ value.kernel_invariants != instance_type.constant_attributes: attr_diff = value.kernel_invariants.difference( instance_type.constant_attributes) if len(attr_diff) > 0: diag = diagnostic.Diagnostic("warning", "object {value} of type {typ} declares attribute(s) {attrs} as " "kernel invariant, but other objects of the same type do not; " "the invariant annotation on this object will be ignored", {"value": repr(value), "typ": types.TypePrinter().name(instance_type, max_depth=0), "attrs": ", ".join(["'{}'".format(attr) for attr in attr_diff])}, loc) self.diagnostics.append(diag) attr_diff = instance_type.constant_attributes.difference( value.kernel_invariants) if len(attr_diff) > 0: diag = diagnostic.Diagnostic("warning", "object {value} of type {typ} does not declare attribute(s) {attrs} as " "kernel invariant, but other objects of the same type do; " "the invariant annotation on other objects will be ignored", {"value": repr(value), "typ": types.TypePrinter().name(instance_type, max_depth=0), "attrs": ", ".join(["'{}'".format(attr) for attr in attr_diff])}, loc) self.diagnostics.append(diag) value.kernel_invariants = value.kernel_invariants.intersection( instance_type.constant_attributes) else: if issubclass(typ, BaseException): if hasattr(typ, 'artiq_builtin'): exception_id = 0 else: exception_id = self.embedding_map.store_object(typ) instance_type = builtins.TException("{}.{}".format(typ.__module__, typ.__qualname__), id=exception_id) constructor_type = types.TExceptionConstructor(instance_type) else: instance_type = types.TInstance("{}.{}".format(typ.__module__, typ.__qualname__), OrderedDict()) instance_type.attributes['__objectid__'] = builtins.TInt32() constructor_type = types.TConstructor(instance_type) constructor_type.attributes['__objectid__'] = builtins.TInt32() instance_type.constructor = constructor_type self.embedding_map.store_type(typ, instance_type, constructor_type) if hasattr(value, 'kernel_invariants'): assert isinstance(value.kernel_invariants, set) instance_type.constant_attributes = value.kernel_invariants if isinstance(value, type): self.value_map[constructor_type].append((value, loc)) return asttyped.QuoteT(value=value, type=constructor_type, loc=loc) else: self.value_map[instance_type].append((value, loc)) return asttyped.QuoteT(value=value, type=instance_type, loc=loc) def call(self, callee, args, kwargs, callback=None): """ Construct an AST fragment calling a function specified by an AST node `function_node`, with given arguments. """ if callback is not None: callback_node = self.quote(callback) cb_begin_loc = self._add("(") callee_node = self.quote(callee) arg_nodes = [] kwarg_nodes = [] kwarg_locs = [] begin_loc = self._add("(") for index, arg in enumerate(args): arg_nodes.append(self.quote(arg)) if index < len(args) - 1: self._add(", ") if any(args) and any(kwargs): self._add(", ") for index, kw in enumerate(kwargs): arg_loc = self._add(kw) equals_loc = self._add("=") kwarg_locs.append((arg_loc, equals_loc)) kwarg_nodes.append(self.quote(kwargs[kw])) if index < len(kwargs) - 1: self._add(", ") end_loc = self._add(")") if callback is not None: cb_end_loc = self._add(")") node = asttyped.CallT( func=callee_node, args=arg_nodes, keywords=[ast.keyword(arg=kw, value=value, arg_loc=arg_loc, equals_loc=equals_loc, loc=arg_loc.join(value.loc)) for kw, value, (arg_loc, equals_loc) in zip(kwargs, kwarg_nodes, kwarg_locs)], starargs=None, kwargs=None, type=types.TVar(), iodelay=None, arg_exprs={}, begin_loc=begin_loc, end_loc=end_loc, star_loc=None, dstar_loc=None, loc=callee_node.loc.join(end_loc)) if callback is not None: node = asttyped.CallT( func=callback_node, args=[node], keywords=[], starargs=None, kwargs=None, type=builtins.TNone(), iodelay=None, arg_exprs={}, begin_loc=cb_begin_loc, end_loc=cb_end_loc, star_loc=None, dstar_loc=None, loc=callback_node.loc.join(cb_end_loc)) return node def suggest_identifier(id, names): sorted_names = sorted(names, key=lambda other: jaro_winkler(id, other), reverse=True) if len(sorted_names) > 0: if jaro_winkler(id, sorted_names[0]) > 0.0 and similarity(id, sorted_names[0]) > 0.5: return sorted_names[0] class StitchingASTTypedRewriter(ASTTypedRewriter): def __init__(self, engine, prelude, globals, host_environment, quote): super().__init__(engine, prelude) self.globals = globals self.env_stack.append(self.globals) self.host_environment = host_environment self.quote = quote def visit_arg(self, node): typ = self._find_name(node.arg, node.loc) # ignore annotations; these are handled in _quote_function return asttyped.argT(type=typ, arg=node.arg, annotation=None, arg_loc=node.arg_loc, colon_loc=node.colon_loc, loc=node.loc) def visit_quoted_function(self, node, function): extractor = LocalExtractor(env_stack=self.env_stack, engine=self.engine) extractor.visit(node) # We quote the defaults so they end up in the global data in LLVM IR. # This way there is no "life before main", i.e. they do not have to be # constructed before the main translated call executes; but the Python # semantics is kept. defaults = function.__defaults__ or () quoted_defaults = [] for default, default_node in zip(defaults, node.args.defaults): quoted_defaults.append(self.quote(default, default_node.loc)) node.args.defaults = quoted_defaults node = asttyped.QuotedFunctionDefT( typing_env=extractor.typing_env, globals_in_scope=extractor.global_, signature_type=types.TVar(), return_type=types.TVar(), name=node.name, args=node.args, returns=node.returns, body=node.body, decorator_list=node.decorator_list, keyword_loc=node.keyword_loc, name_loc=node.name_loc, arrow_loc=node.arrow_loc, colon_loc=node.colon_loc, at_locs=node.at_locs, loc=node.loc) try: self.env_stack.append(node.typing_env) return self.generic_visit(node) finally: self.env_stack.pop() def visit_Name(self, node): typ = super()._try_find_name(node.id) if typ is not None: # Value from device environment. return asttyped.NameT(type=typ, id=node.id, ctx=node.ctx, loc=node.loc) else: # Try to find this value in the host environment and quote it. if node.id == "print": return self.quote(print, node.loc) elif node.id in self.host_environment: return self.quote(self.host_environment[node.id], node.loc) else: names = set() names.update(self.host_environment.keys()) for typing_env in reversed(self.env_stack): names.update(typing_env.keys()) suggestion = suggest_identifier(node.id, names) if suggestion is not None: diag = diagnostic.Diagnostic("fatal", "name '{name}' is not bound to anything; did you mean '{suggestion}'?", {"name": node.id, "suggestion": suggestion}, node.loc) self.engine.process(diag) else: diag = diagnostic.Diagnostic("fatal", "name '{name}' is not bound to anything", {"name": node.id}, node.loc) self.engine.process(diag) class StitchingInferencer(Inferencer): def __init__(self, engine, value_map, quote): super().__init__(engine) self.value_map = value_map self.quote = quote self.attr_type_cache = {} def _compute_attr_type(self, object_value, object_type, object_loc, attr_name, loc): if not hasattr(object_value, attr_name): if attr_name.startswith('_'): names = set(filter(lambda name: not name.startswith('_'), dir(object_value))) else: names = set(dir(object_value)) suggestion = suggest_identifier(attr_name, names) note = diagnostic.Diagnostic("note", "attribute accessed here", {}, loc) if suggestion is not None: diag = diagnostic.Diagnostic("error", "host object does not have an attribute '{attr}'; " "did you mean '{suggestion}'?", {"attr": attr_name, "suggestion": suggestion}, object_loc, notes=[note]) else: diag = diagnostic.Diagnostic("error", "host object does not have an attribute '{attr}'", {"attr": attr_name}, object_loc, notes=[note]) self.engine.process(diag) return # Figure out the ARTIQ type of the value of the attribute. # We do this by quoting it, as if to serialize. This has some # overhead (i.e. synthesizing a source buffer), but has the advantage # of having the host-to-ARTIQ mapping code in only one place and # also immediately getting proper diagnostics on type errors. attr_value = getattr(object_value, attr_name) if (inspect.ismethod(attr_value) and types.is_instance(object_type) and # Check that the method is indeed defined on the class, # and not just this instance. The check is written in # the inverted form and not as hasattr(type(attr_value)) # since the method may as well be defined on a superclass. attr_name not in object_value.__dict__): # In cases like: # class c: # @kernel # def f(self): pass # we want f to be defined on the class, not on the instance. attributes = object_type.constructor.attributes attr_value = SpecializedFunction(object_type, attr_value.__func__) else: attributes = object_type.attributes attr_value_type = None if isinstance(attr_value, list): # Fast path for lists of scalars. IS_FLOAT = 1 IS_INT32 = 2 IS_INT64 = 4 state = 0 for elt in attr_value: if elt.__class__ == float: state |= IS_FLOAT elif elt.__class__ == int: if -2**31 < elt < 2**31-1: state |= IS_INT32 elif -2**63 < elt < 2**63-1: state |= IS_INT64 else: state = -1 break else: state = -1 if state == IS_FLOAT: attr_value_type = builtins.TList(builtins.TFloat()) elif state == IS_INT32: attr_value_type = builtins.TList(builtins.TInt32()) elif state == IS_INT64: attr_value_type = builtins.TList(builtins.TInt64()) if attr_value_type is None: note = diagnostic.Diagnostic("note", "while inferring a type for an attribute '{attr}' of a host object", {"attr": attr_name}, loc) with self.engine.context(note): # Slow path. We don't know what exactly is the attribute value, # so we quote it only for the error message that may possibly result. ast = self.quote(attr_value, object_loc.expanded_from) Inferencer(engine=self.engine).visit(ast) IntMonomorphizer(engine=self.engine).visit(ast) attr_value_type = ast.type return attributes, attr_value_type def _unify_attribute(self, result_type, value_node, attr_name, attr_loc, loc): # The inferencer can only observe types, not values; however, # when we work with host objects, we have to get the values # somewhere, since host interpreter does not have types. # Since we have categorized every host object we quoted according to # its type, we now interrogate every host object we have to ensure # that we can successfully serialize the value of the attribute we # are now adding at the code generation stage. object_type = value_node.type.find() for object_value, object_loc in self.value_map[object_type]: attr_type_key = (id(object_value), attr_name) try: attributes, attr_value_type = self.attr_type_cache[attr_type_key] except KeyError: attributes, attr_value_type = \ self._compute_attr_type(object_value, object_type, object_loc, attr_name, loc) self.attr_type_cache[attr_type_key] = attributes, attr_value_type if attr_name not in attributes: # We just figured out what the type should be. Add it. attributes[attr_name] = attr_value_type else: # Does this conflict with an earlier guess? try: attributes[attr_name].unify(attr_value_type) except types.UnificationError as e: printer = types.TypePrinter() diag = diagnostic.Diagnostic("error", "host object has an attribute '{attr}' of type {typea}, which is" " different from previously inferred type {typeb} for the same attribute", {"typea": printer.name(attr_value_type), "typeb": printer.name(attributes[attr_name]), "attr": attr_name}, object_loc) self.engine.process(diag) super()._unify_attribute(result_type, value_node, attr_name, attr_loc, loc) def visit_QuoteT(self, node): if inspect.ismethod(node.value): if types.is_rpc(types.get_method_function(node.type)): return self._unify_method_self(method_type=node.type, attr_name=node.value.__func__.__name__, attr_loc=None, loc=node.loc, self_loc=node.self_loc) class TypedtreeHasher(algorithm.Visitor): def generic_visit(self, node): def freeze(obj): if isinstance(obj, ast.AST): return self.visit(obj) elif isinstance(obj, list): return hash(tuple(freeze(elem) for elem in obj)) elif isinstance(obj, types.Type): return hash(obj.find()) else: # We don't care; only types change during inference. pass fields = node._fields if hasattr(node, '_types'): fields = fields + node._types return hash(tuple(freeze(getattr(node, field_name)) for field_name in fields)) class Stitcher: def __init__(self, core, dmgr, engine=None, print_as_rpc=True): self.core = core self.dmgr = dmgr if engine is None: self.engine = diagnostic.Engine(all_errors_are_fatal=True) else: self.engine = engine self.name = "" self.typedtree = [] self.inject_at = 0 self.globals = {} # We don't want some things from the prelude as they are provided in # the host Python namespace and gain special meaning when quoted. self.prelude = prelude.globals() if print_as_rpc: self.prelude.pop("print") self.prelude.pop("array") self.functions = {} self.embedding_map = EmbeddingMap() self.value_map = defaultdict(lambda: []) def stitch_call(self, function, args, kwargs, callback=None): # We synthesize source code for the initial call so that # diagnostics would have something meaningful to display to the user. synthesizer = self._synthesizer(self._function_loc(function.artiq_embedded.function)) call_node = synthesizer.call(function, args, kwargs, callback) synthesizer.finalize() self.typedtree.append(call_node) def finalize(self): inferencer = StitchingInferencer(engine=self.engine, value_map=self.value_map, quote=self._quote) typedtree_hasher = TypedtreeHasher() # Iterate inference to fixed point. old_typedtree_hash = None old_attr_count = None while True: inferencer.visit(self.typedtree) typedtree_hash = typedtree_hasher.visit(self.typedtree) attr_count = self.embedding_map.attribute_count() if old_typedtree_hash == typedtree_hash and old_attr_count == attr_count: break old_typedtree_hash = typedtree_hash old_attr_count = attr_count # After we've discovered every referenced attribute, check if any kernel_invariant # specifications refers to ones we didn't encounter. for host_type in self.embedding_map.type_map: instance_type, constructor_type = self.embedding_map.type_map[host_type] if not hasattr(instance_type, "constant_attributes"): # Exceptions lack user-definable attributes. continue for attribute in instance_type.constant_attributes: if attribute in instance_type.attributes: # Fast path; if the ARTIQ Python type has the attribute, then every observed # value is guaranteed to have it too. continue for value, loc in self.value_map[instance_type]: if hasattr(value, attribute): continue diag = diagnostic.Diagnostic("warning", "object {value} of type {typ} declares attribute '{attr}' as " "kernel invariant, but the instance referenced here does not " "have this attribute", {"value": repr(value), "typ": types.TypePrinter().name(instance_type, max_depth=0), "attr": attribute}, loc) self.engine.process(diag) # After we have found all functions, synthesize a module to hold them. source_buffer = source.Buffer("", "") self.typedtree = asttyped.ModuleT( typing_env=self.globals, globals_in_scope=set(), body=self.typedtree, loc=source.Range(source_buffer, 0, 0)) def _inject(self, node): self.typedtree.insert(self.inject_at, node) self.inject_at += 1 def _synthesizer(self, expanded_from=None): return ASTSynthesizer(expanded_from=expanded_from, embedding_map=self.embedding_map, value_map=self.value_map, quote_function=self._quote_function) def _function_loc(self, function): if isinstance(function, SpecializedFunction): function = function.host_function if hasattr(function, 'artiq_embedded') and function.artiq_embedded.function: function = function.artiq_embedded.function if isinstance(function, str): return source.Range(source.Buffer(function, ""), 0, 0) filename = function.__code__.co_filename line = function.__code__.co_firstlineno name = function.__code__.co_name source_line = linecache.getline(filename, line).lstrip() while source_line.startswith("@") or source_line == "": line += 1 source_line = linecache.getline(filename, line).lstrip() if "" in function.__qualname__: column = 0 # can't get column of lambda else: column = re.search("def", source_line).start(0) source_buffer = source.Buffer(source_line, filename, line) return source.Range(source_buffer, column, column) def _call_site_note(self, call_loc, fn_kind): if call_loc: if fn_kind == 'syscall': return [diagnostic.Diagnostic("note", "in system call here", {}, call_loc)] elif fn_kind == 'rpc': return [diagnostic.Diagnostic("note", "in function called remotely here", {}, call_loc)] elif fn_kind == 'kernel': return [diagnostic.Diagnostic("note", "in kernel function here", {}, call_loc)] else: assert False else: return [] def _type_of_param(self, function, loc, param, fn_kind): if param.annotation is not inspect.Parameter.empty: # Type specified explicitly. return self._extract_annot(function, param.annotation, "argument '{}'".format(param.name), loc, fn_kind) elif fn_kind == 'syscall': # Syscalls must be entirely annotated. diag = diagnostic.Diagnostic("error", "system call argument '{argument}' must have a type annotation", {"argument": param.name}, self._function_loc(function), notes=self._call_site_note(loc, fn_kind)) self.engine.process(diag) elif fn_kind == 'rpc' and param.default is not inspect.Parameter.empty: notes = [] notes.append(diagnostic.Diagnostic("note", "expanded from here while trying to infer a type for an" " unannotated optional argument '{argument}' from its default value", {"argument": param.name}, self._function_loc(function))) if loc is not None: notes.append(self._call_site_note(loc, fn_kind)) with self.engine.context(*notes): # Try and infer the type from the default value. # This is tricky, because the default value might not have # a well-defined type in APython. # In this case, we bail out, but mention why we do it. ast = self._quote(param.default, None) Inferencer(engine=self.engine).visit(ast) IntMonomorphizer(engine=self.engine).visit(ast) return ast.type else: # Let the rest of the program decide. return types.TVar() def _quote_embedded_function(self, function, flags): if isinstance(function, SpecializedFunction): host_function = function.host_function else: host_function = function if not hasattr(host_function, "artiq_embedded"): raise ValueError("{} is not an embedded function".format(repr(host_function))) # Extract function source. embedded_function = host_function.artiq_embedded.function if isinstance(embedded_function, str): # This is a function to be eval'd from the given source code in string form. # Mangle the host function's id() into the fully qualified name to make sure # there are no collisions. source_code = embedded_function embedded_function = host_function filename = "" module_name = "__eval_{}".format(id(host_function)) first_line = 1 else: source_code = inspect.getsource(embedded_function) filename = embedded_function.__code__.co_filename module_name = embedded_function.__globals__['__name__'] first_line = embedded_function.__code__.co_firstlineno # Extract function annotation. signature = inspect.signature(embedded_function) loc = self._function_loc(embedded_function) arg_types = OrderedDict() optarg_types = OrderedDict() for param in signature.parameters.values(): if param.kind == inspect.Parameter.VAR_POSITIONAL or \ param.kind == inspect.Parameter.VAR_KEYWORD: diag = diagnostic.Diagnostic("error", "variadic arguments are not supported; '{argument}' is variadic", {"argument": param.name}, self._function_loc(function), notes=self._call_site_note(loc, fn_kind='kernel')) self.engine.process(diag) arg_type = self._type_of_param(function, loc, param, fn_kind='kernel') if param.default is inspect.Parameter.empty: arg_types[param.name] = arg_type else: optarg_types[param.name] = arg_type if signature.return_annotation is not inspect.Signature.empty: ret_type = self._extract_annot(function, signature.return_annotation, "return type", loc, fn_kind='kernel') else: ret_type = types.TVar() # Extract function environment. host_environment = dict() host_environment.update(embedded_function.__globals__) cells = embedded_function.__closure__ cell_names = embedded_function.__code__.co_freevars host_environment.update({var: cells[index] for index, var in enumerate(cell_names)}) # Find out how indented we are. initial_whitespace = re.search(r"^\s*", source_code).group(0) initial_indent = len(initial_whitespace.expandtabs()) # Parse. source_buffer = source.Buffer(source_code, filename, first_line) lexer = source_lexer.Lexer(source_buffer, version=sys.version_info[0:2], diagnostic_engine=self.engine) lexer.indent = [(initial_indent, source.Range(source_buffer, 0, len(initial_whitespace)), initial_whitespace)] parser = source_parser.Parser(lexer, version=sys.version_info[0:2], diagnostic_engine=self.engine) function_node = parser.file_input().body[0] # Mangle the name, since we put everything into a single module. full_function_name = "{}.{}".format(module_name, host_function.__qualname__) if isinstance(function, SpecializedFunction): instance_type = function.instance_type function_node.name = "_Z{}{}I{}{}Ezz".format(len(full_function_name), full_function_name, len(instance_type.name), instance_type.name) else: function_node.name = "_Z{}{}zz".format(len(full_function_name), full_function_name) # Record the function in the function map so that LLVM IR generator # can handle quoting it. self.embedding_map.store_function(function, function_node.name) # Fill in the function type before typing it to handle recursive # invocations. self.functions[function] = types.TFunction(arg_types, optarg_types, ret_type) # Rewrite into typed form. asttyped_rewriter = StitchingASTTypedRewriter( engine=self.engine, prelude=self.prelude, globals=self.globals, host_environment=host_environment, quote=self._quote) function_node = asttyped_rewriter.visit_quoted_function(function_node, embedded_function) function_node.flags = flags # Add it into our typedtree so that it gets inferenced and codegen'd. self._inject(function_node) # Tie the typing knot. self.functions[function].unify(function_node.signature_type) return function_node def _extract_annot(self, function, annot, kind, call_loc, fn_kind): if annot is None: annot = builtins.TNone() if not isinstance(annot, types.Type): diag = diagnostic.Diagnostic("error", "type annotation for {kind}, '{annot}', is not an ARTIQ type", {"kind": kind, "annot": repr(annot)}, self._function_loc(function), notes=self._call_site_note(call_loc, fn_kind)) self.engine.process(diag) return types.TVar() else: return annot def _quote_syscall(self, function, loc): signature = inspect.signature(function) arg_types = OrderedDict() optarg_types = OrderedDict() for param in signature.parameters.values(): if param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD: diag = diagnostic.Diagnostic("error", "system calls must only use positional arguments; '{argument}' isn't", {"argument": param.name}, self._function_loc(function), notes=self._call_site_note(loc, fn_kind='syscall')) self.engine.process(diag) if param.default is inspect.Parameter.empty: arg_types[param.name] = self._type_of_param(function, loc, param, fn_kind='syscall') else: diag = diagnostic.Diagnostic("error", "system call argument '{argument}' must not have a default value", {"argument": param.name}, self._function_loc(function), notes=self._call_site_note(loc, fn_kind='syscall')) self.engine.process(diag) if signature.return_annotation is not inspect.Signature.empty: ret_type = self._extract_annot(function, signature.return_annotation, "return type", loc, fn_kind='syscall') else: diag = diagnostic.Diagnostic("error", "system call must have a return type annotation", {}, self._function_loc(function), notes=self._call_site_note(loc, fn_kind='syscall')) self.engine.process(diag) ret_type = types.TVar() function_type = types.TExternalFunction(arg_types, ret_type, name=function.artiq_embedded.syscall, flags=function.artiq_embedded.flags) self.functions[function] = function_type return function_type def _quote_rpc(self, function, loc): if isinstance(function, SpecializedFunction): host_function = function.host_function else: host_function = function ret_type = builtins.TNone() if isinstance(host_function, pytypes.BuiltinFunctionType): pass elif (isinstance(host_function, pytypes.FunctionType) or \ isinstance(host_function, pytypes.MethodType)): if isinstance(host_function, pytypes.FunctionType): signature = inspect.signature(host_function) else: # inspect bug? signature = inspect.signature(host_function.__func__) if signature.return_annotation is not inspect.Signature.empty: ret_type = self._extract_annot(host_function, signature.return_annotation, "return type", loc, fn_kind='rpc') else: assert False is_async = False if hasattr(host_function, "artiq_embedded") and \ "async" in host_function.artiq_embedded.flags: is_async = True if not builtins.is_none(ret_type) and is_async: note = diagnostic.Diagnostic("note", "function called here", {}, loc) diag = diagnostic.Diagnostic("fatal", "functions that return a value cannot be defined as async RPCs", {}, self._function_loc(host_function.artiq_embedded.function), notes=[note]) self.engine.process(diag) function_type = types.TRPC(ret_type, service=self.embedding_map.store_object(host_function), is_async=is_async) self.functions[function] = function_type return function_type def _quote_function(self, function, loc): if isinstance(function, SpecializedFunction): host_function = function.host_function else: host_function = function if function in self.functions: return self.functions[function] math_type = math_fns.match(function) if math_type is not None: self.functions[function] = math_type elif not hasattr(host_function, "artiq_embedded") or \ (host_function.artiq_embedded.core_name is None and host_function.artiq_embedded.portable is False and host_function.artiq_embedded.syscall is None and host_function.artiq_embedded.forbidden is False): self._quote_rpc(function, loc) elif host_function.artiq_embedded.function is not None: if host_function.__name__ == "": note = diagnostic.Diagnostic("note", "lambda created here", {}, self._function_loc(host_function.artiq_embedded.function)) diag = diagnostic.Diagnostic("fatal", "lambdas cannot be used as kernel functions", {}, loc, notes=[note]) self.engine.process(diag) core_name = host_function.artiq_embedded.core_name if core_name is not None and self.dmgr.get(core_name) != self.core: note = diagnostic.Diagnostic("note", "called from this function", {}, loc) diag = diagnostic.Diagnostic("fatal", "this function runs on a different core device '{name}'", {"name": host_function.artiq_embedded.core_name}, self._function_loc(host_function.artiq_embedded.function), notes=[note]) self.engine.process(diag) self._quote_embedded_function(function, flags=host_function.artiq_embedded.flags) elif host_function.artiq_embedded.syscall is not None: # Insert a storage-less global whose type instructs the compiler # to perform a system call instead of a regular call. self._quote_syscall(function, loc) elif host_function.artiq_embedded.forbidden is not None: diag = diagnostic.Diagnostic("fatal", "this function cannot be called as an RPC", {}, self._function_loc(host_function), notes=self._call_site_note(loc, fn_kind='rpc')) self.engine.process(diag) else: assert False return self.functions[function] def _quote(self, value, loc): synthesizer = self._synthesizer(loc) node = synthesizer.quote(value) synthesizer.finalize() if len(synthesizer.diagnostics) > 0: for warning in synthesizer.diagnostics: self.engine.process(warning) return node