use core::result; use board_misoc::{clock, i2c}; #[cfg(not(si5324_soft_reset))] use board_misoc::csr; type Result = result::Result; const BUSNO: u8 = 0; const ADDRESS: u8 = 0x68; #[cfg(not(si5324_soft_reset))] fn hard_reset() { unsafe { csr::si5324_rst_n::out_write(0); } clock::spin_us(1_000); unsafe { csr::si5324_rst_n::out_write(1); } clock::spin_us(10_000); } // NOTE: the logical parameters DO NOT MAP to physical values written // into registers. They have to be mapped; see the datasheet. // DSPLLsim reports the logical parameters in the design summary, not // the physical register values. pub struct FrequencySettings { pub n1_hs: u8, pub nc1_ls: u32, pub n2_hs: u8, pub n2_ls: u32, pub n31: u32, pub n32: u32, pub bwsel: u8, pub crystal_as_ckin2: bool } pub enum Input { Ckin1, Ckin2, } fn map_frequency_settings(settings: &FrequencySettings) -> Result { if settings.nc1_ls != 0 && (settings.nc1_ls % 2) == 1 { return Err("NC1_LS must be 0 or even") } if settings.nc1_ls > (1 << 20) { return Err("NC1_LS is too high") } if (settings.n2_ls % 2) == 1 { return Err("N2_LS must be even") } if settings.n2_ls > (1 << 20) { return Err("N2_LS is too high") } if settings.n31 > (1 << 19) { return Err("N31 is too high") } if settings.n32 > (1 << 19) { return Err("N32 is too high") } let r = FrequencySettings { n1_hs: match settings.n1_hs { 4 => 0b000, 5 => 0b001, 6 => 0b010, 7 => 0b011, 8 => 0b100, 9 => 0b101, 10 => 0b110, 11 => 0b111, _ => return Err("N1_HS has an invalid value") }, nc1_ls: settings.nc1_ls - 1, n2_hs: match settings.n2_hs { 4 => 0b000, 5 => 0b001, 6 => 0b010, 7 => 0b011, 8 => 0b100, 9 => 0b101, 10 => 0b110, 11 => 0b111, _ => return Err("N2_HS has an invalid value") }, n2_ls: settings.n2_ls - 1, n31: settings.n31 - 1, n32: settings.n32 - 1, bwsel: settings.bwsel, crystal_as_ckin2: settings.crystal_as_ckin2 }; Ok(r) } fn write(reg: u8, val: u8) -> Result<()> { i2c::start(BUSNO).unwrap(); if !i2c::write(BUSNO, ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c::write(BUSNO, reg).unwrap() { return Err("Si5324 failed to ack register") } if !i2c::write(BUSNO, val).unwrap() { return Err("Si5324 failed to ack value") } i2c::stop(BUSNO).unwrap(); Ok(()) } #[cfg(si5324_soft_reset)] fn write_no_ack_value(reg: u8, val: u8) -> Result<()> { i2c::start(BUSNO).unwrap(); if !i2c::write(BUSNO, ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c::write(BUSNO, reg).unwrap() { return Err("Si5324 failed to ack register") } i2c::write(BUSNO, val).unwrap(); i2c::stop(BUSNO).unwrap(); Ok(()) } fn read(reg: u8) -> Result { i2c::start(BUSNO).unwrap(); if !i2c::write(BUSNO, ADDRESS << 1).unwrap() { return Err("Si5324 failed to ack write address") } if !i2c::write(BUSNO, reg).unwrap() { return Err("Si5324 failed to ack register") } i2c::restart(BUSNO).unwrap(); if !i2c::write(BUSNO, (ADDRESS << 1) | 1).unwrap() { return Err("Si5324 failed to ack read address") } let val = i2c::read(BUSNO, false).unwrap(); i2c::stop(BUSNO).unwrap(); Ok(val) } fn ident() -> Result { Ok(((read(134)? as u16) << 8) | (read(135)? as u16)) } #[cfg(si5324_soft_reset)] fn soft_reset() -> Result<()> { write_no_ack_value(136, read(136)? | 0x80)?; clock::spin_us(10_000); Ok(()) } fn has_xtal() -> Result { Ok((read(129)? & 0x01) == 0) // LOSX_INT=0 } fn has_ckin(input: Input) -> Result { match input { Input::Ckin1 => Ok((read(129)? & 0x02) == 0), // LOS1_INT=0 Input::Ckin2 => Ok((read(129)? & 0x04) == 0), // LOS2_INT=0 } } fn locked() -> Result { Ok((read(130)? & 0x01) == 0) // LOL_INT=0 } fn monitor_lock() -> Result<()> { info!("waiting for Si5324 lock..."); let t = clock::get_ms(); while !locked()? { // Yes, lock can be really slow. if clock::get_ms() > t + 20000 { return Err("Si5324 lock timeout"); } } info!(" ...locked"); Ok(()) } fn init() -> Result<()> { #[cfg(not(si5324_soft_reset))] hard_reset(); #[cfg(soc_platform = "kasli")] { i2c::switch_select(BUSNO, 0x70, 0)?; i2c::switch_select(BUSNO, 0x71, 1 << 3)?; } #[cfg(soc_platform = "kc705")] i2c::switch_select(BUSNO, 0x74, 1 << 7)?; if ident()? != 0x0182 { return Err("Si5324 does not have expected product number"); } #[cfg(si5324_soft_reset)] soft_reset()?; Ok(()) } pub fn bypass(input: Input) -> Result<()> { let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; init()?; write(21, read(21)? & 0xfe)?; // CKSEL_PIN=0 write(3, (read(3)? & 0x3f) | (cksel_reg << 6))?; // CKSEL_REG write(4, (read(4)? & 0x3f) | (0b00 << 6))?; // AUTOSEL_REG=b00 write(6, (read(6)? & 0xc0) | 0b111111)?; // SFOUT2_REG=b111 SFOUT1_REG=b111 write(0, (read(0)? & 0xfd) | 0x02)?; // BYPASS_REG=1 Ok(()) } pub fn setup(settings: &FrequencySettings, input: Input) -> Result<()> { let s = map_frequency_settings(settings)?; let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; init()?; if settings.crystal_as_ckin2 { write(0, read(0)? | 0x40)?; // FREE_RUN=1 } write(2, (read(2)? & 0x0f) | (s.bwsel << 4))?; write(21, read(21)? & 0xfe)?; // CKSEL_PIN=0 write(3, (read(3)? & 0x2f) | (cksel_reg << 6) | 0x10)?; // CKSEL_REG, SQ_ICAL=1 write(4, (read(4)? & 0x3f) | (0b00 << 6))?; // AUTOSEL_REG=b00 write(6, (read(6)? & 0xc0) | 0b111111)?; // SFOUT2_REG=b111 SFOUT1_REG=b111 write(25, (s.n1_hs << 5 ) as u8)?; write(31, (s.nc1_ls >> 16) as u8)?; write(32, (s.nc1_ls >> 8 ) as u8)?; write(33, (s.nc1_ls) as u8)?; write(34, (s.nc1_ls >> 16) as u8)?; // write to NC2_LS as well write(35, (s.nc1_ls >> 8 ) as u8)?; write(36, (s.nc1_ls) as u8)?; write(40, (s.n2_hs << 5 ) as u8 | (s.n2_ls >> 16) as u8)?; write(41, (s.n2_ls >> 8 ) as u8)?; write(42, (s.n2_ls) as u8)?; write(43, (s.n31 >> 16) as u8)?; write(44, (s.n31 >> 8) as u8)?; write(45, (s.n31) as u8)?; write(46, (s.n32 >> 16) as u8)?; write(47, (s.n32 >> 8) as u8)?; write(48, (s.n32) as u8)?; write(137, read(137)? | 0x01)?; // FASTLOCK=1 write(136, read(136)? | 0x40)?; // ICAL=1 if !has_xtal()? { return Err("Si5324 misses XA/XB signal"); } if !has_ckin(input)? { return Err("Si5324 misses clock input signal"); } monitor_lock()?; Ok(()) } pub fn select_input(input: Input) -> Result<()> { let cksel_reg = match input { Input::Ckin1 => 0b00, Input::Ckin2 => 0b01, }; write(3, (read(3)? & 0x3f) | (cksel_reg << 6))?; if !has_ckin(input)? { return Err("Si5324 misses clock input signal"); } monitor_lock()?; Ok(()) } #[cfg(has_siphaser)] pub mod siphaser { use super::*; use board_misoc::{csr, clock}; pub fn select_recovered_clock(rc: bool) -> Result<()> { write(3, (read(3)? & 0xdf) | (1 << 5))?; // DHOLD=1 unsafe { csr::siphaser::switch_clocks_write(if rc { 1 } else { 0 }); } write(3, (read(3)? & 0xdf) | (0 << 5))?; // DHOLD=0 monitor_lock()?; Ok(()) } fn phase_shift(direction: u8) { unsafe { csr::siphaser::phase_shift_write(direction); while csr::siphaser::phase_shift_done_read() == 0 {} } // wait for the Si5324 loop to stabilize clock::spin_us(500); } fn has_error() -> bool { unsafe { csr::siphaser::error_write(1); } clock::spin_us(5000); unsafe { csr::siphaser::error_read() != 0 } } fn find_edge(target: bool) -> Result { let mut nshifts = 0; let mut previous = has_error(); loop { phase_shift(1); nshifts += 1; let current = has_error(); if previous != target && current == target { return Ok(nshifts); } if nshifts > 5000 { return Err("failed to find timing error edge"); } previous = current; } } pub fn calibrate_skew() -> Result<()> { let jitter_margin = 32; let lead = find_edge(false)?; for _ in 0..jitter_margin { phase_shift(1); } let width = find_edge(true)? + jitter_margin; // width is 360 degrees (one full rotation of the phase between s/h limits) minus jitter info!("calibration successful, lead: {}, width: {} ({}deg)", lead, width, width*360/(56*8)); // Apply reverse phase shift for half the width to get into the // middle of the working region. for _ in 0..width/2 { phase_shift(0); } Ok(()) } }