This allows assert() to be used on Zynq, where abort() is not
currently implemented for kernels. Furthermore, this is arguably
the more natural implementation of assertions on all kernel targets
(i.e. where embedding into host Python is used), as it matches host
Python behavior, and the exception information actually makes it to
the user rather than leading to a ConnectionClosed error.
Since this does not implement printing of the subexpressions, I
left the old print+abort implementation as default for the time
being.
The lit/integration/instance.py diff isn't just a spurious change;
the exception-based assert implementation exposes a limitation in
the existing closure lifetime tracking algorithm (which is not
supposed to be what is tested there).
GitHub: Fixes#1539.
Jagged arrays are no longer silently inferred as dtype=object,
as per NEP-34.
The compiler ndarray (re)implementation is unchanged, so the
test still fails.
Added more tests and use normal rpc instead of async rpc.
Async RPC does not represent the real throughput which is limited by the
hardware and the network. Normal RPC which requires a response from the
remote is closer to real usecases.
This generates rather more code than necessary, but has
the advantage of automatically handling incomplete
multi-dimensional subscripts which still leave arrays
behind.
Lists and arrays no longer have the same representation all
the way through codegen, as used to be the case.
This could/should be made more efficient later, eliding the
temporary copies.
Left generic transpose (shape order inversion) for now, as that
would be less ugly if we implement forwarding to Python function
bodies for array function implementations.
Needs a runtime test case.
LLVM will take care of optimising the loops. This was still
unnecessarily painful; implementing generics and implementing
this in ARTIQ Python looks very attractive right now.
Relies on the runtime to provide the necessary
(libm-compatible) functions.
The test is nifty, but a bit brittle; if this breaks in the
future because of optimizer changes, do not hesitate to convert
this into a more pedestrian test case.
So far, this is not exposed to the user beyond implicit conversions.
Note that all the implicit conversions, such as triggered by adding
arrays of mismatching types, or dividing integer arrays, are currently
emitted in a maximally inefficient way, where a temporary copy is first
made for the type conversion. The conversions would more sensibly be
implemented during the per-element operations to save on the extra
copies, but the current behaviour fell out of the rest of the IR
generator structure without extra changes.
Matches NumPy. Slicing a TList reallocates, this doesn't; offsetting
couldn't be handled in the IR without introducing new semantics
(the Alloc kludge; could/should be made its own IR type).
Still needs support through all the rest of the compiler, and
support for higher-dimensional arrays.
Alternatively, we could always assume ndarrays of ndarrays
are rectangular (i.e. ban array/list element types), and
detect mismatch at runtime. This might turn out to be
preferrable to be able to construct matrices from rows/columns.
`array()` is disallowed for no particularly good reason but
numpy API compatibility.
This reverts commits f8d1506922
and cf19c9512d.
While the commit just fixes a clear typo in the implementation,
it turns out the original algorithm isn't flexible enough to
capture functions that transitively return references to
long-lived data. For instance, while cache_get() is special-cased
in the compiler to be recognised as returning a value of Global()
lifetime, a function just forwarding to it (as seen in the
embedding tests) isn't anymore.
A separate issue is also that this makes implementing functions
that take lists and return references to global data in user code
impossible, which central parts of the Oxford codebase rely on.
Just reverting for now to unblock master; a fix is easily designed,
but needs testing.
See test case – previously, the highest-priority pending run would
be used to calculate the timeout, rather than the earliest one.
This probably managed to go undetected for that long as any unrelated
changes to the pipeline (e.g. new submissions, or experiments pausing)
would also cause _get_run() to be re-evaluated.
With support for polymorphism (or type erasure on pointers to
member functions) being absent in the ARTIQ compiler, code
generation is vital to be able to implement abstractions that
work with user-provided lists/trees of objects with uniform
interfaces (e.g. a common base class, or duck typing), but
different concrete types.
@kernel_from_string has been in production use for exactly
this use case in Oxford for the better part of a year now
(various places in ndscan).
GitHub: Fixes#1089.
I had accidentally not included this local diff in the PR that was
merged as commit cdaf554736.
Doesn't include tests for any of the interesting edge cases yet
(nans, infinities, signed zero, int.min), some of which might be
handled differently than by the host Python. In particular, the
select condition should logically use copysign(arg, 1) for the
comparison (i.e., always clear the sign bit), but currently the
chance of anyone running FP-heavy algorithms where this would
matter on the core device is close to zero [1].
[1] Sign of your choice.