Merge branch 'master' into phaser

* master:
  runtime: replace a (deliberate) memory leak with an interner.
  compiler: disable remarks.
  runtime: rewrite i2c support code in Rust.
  runtime: rewrite rtio support code in Rust.
This commit is contained in:
Robert Jördens 2016-11-21 22:26:52 +01:00
commit feb95bf3cf
15 changed files with 409 additions and 467 deletions

View File

@ -40,7 +40,7 @@ class Source:
return cls(source.Buffer(f.read(), filename, 1), engine=engine)
class Module:
def __init__(self, src, ref_period=1e-6, attribute_writeback=True, remarks=True):
def __init__(self, src, ref_period=1e-6, attribute_writeback=True, remarks=False):
self.attribute_writeback = attribute_writeback
self.engine = src.engine
self.embedding_map = src.embedding_map

View File

@ -3,8 +3,7 @@ from artiq.language.types import TInt64, TInt32, TNone
@syscall(flags={"nowrite"})
def rtio_output(time_mu: TInt64, channel: TInt32, addr: TInt32, data: TInt32
) -> TNone:
def rtio_output(time_mu: TInt64, channel: TInt32, addr: TInt32, data: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")

View File

@ -98,18 +98,18 @@ static mut API: &'static [(&'static str, *const ())] = &[
api!(cache_put = ::cache_put),
/* direct syscalls */
api!(rtio_init),
api!(rtio_get_counter),
api!(rtio_init = ::rtio::init),
api!(rtio_get_counter = ::rtio::get_counter),
api!(rtio_log),
api!(rtio_output),
api!(rtio_input_timestamp),
api!(rtio_input_data),
api!(rtio_output = ::rtio::output),
api!(rtio_input_timestamp = ::rtio::input_timestamp),
api!(rtio_input_data = ::rtio::input_data),
api!(i2c_init),
api!(i2c_start),
api!(i2c_stop),
api!(i2c_write),
api!(i2c_read),
api!(i2c_init = ::i2c::init),
api!(i2c_start = ::i2c::start),
api!(i2c_stop = ::i2c::stop),
api!(i2c_write = ::i2c::write),
api!(i2c_read = ::i2c::read),
// #if (defined CONFIG_AD9154_CS)
api!(ad9154_init),

View File

@ -0,0 +1,166 @@
use board::csr;
fn half_period() {
unsafe {
csr::timer_kernel::en_write(0);
csr::timer_kernel::load_write(csr::CONFIG_CLOCK_FREQUENCY/10000);
csr::timer_kernel::reload_write(0);
csr::timer_kernel::en_write(1);
csr::timer_kernel::update_value_write(1);
while csr::timer_kernel::value_read() != 0 {
csr::timer_kernel::update_value_write(1)
}
}
}
#[cfg(has_i2c)]
mod imp {
use board::csr;
fn sda_bit(busno: u32) -> u32 { 1 << (2 * busno + 1) }
fn scl_bit(busno: u32) -> u32 { 1 << (2 * busno) }
pub fn sda_i(busno: u32) -> bool {
unsafe {
if busno >= csr::CONFIG_I2C_BUS_COUNT {
true
} else {
csr::i2c::in_read() & sda_bit(busno) != 0
}
}
}
pub fn sda_oe(busno: u32, oe: bool) {
unsafe {
let reg = csr::i2c::oe_read();
let reg = if oe { reg | sda_bit(busno) } else { reg & !sda_bit(busno) };
csr::i2c::oe_write(reg);
}
}
pub fn sda_o(busno: u32, o: bool) {
unsafe {
let reg = csr::i2c::out_read();
let reg = if o { reg | sda_bit(busno) } else { reg & !sda_bit(busno) };
csr::i2c::out_write(reg)
}
}
pub fn scl_oe(busno: u32, oe: bool) {
unsafe {
let reg = csr::i2c::oe_read();
let reg = if oe { reg | scl_bit(busno) } else { reg & !scl_bit(busno) };
csr::i2c::oe_write(reg)
}
}
pub fn scl_o(busno: u32, o: bool) {
unsafe {
let reg = csr::i2c::out_read();
let reg = if o { reg | scl_bit(busno) } else { reg & !scl_bit(busno) };
csr::i2c::out_write(reg)
}
}
}
// #[cfg(not(has_i2c))]
// mod imp {
// pub fn sda_i(busno: u32) -> bool { true }
// pub fn sda_oe(busno: u32, oe: bool) {}
// pub fn sda_o(busno: u32, o: bool) {}
// pub fn scl_oe(busno: u32, oe: bool) {}
// pub fn scl_o(busno: u32, o: bool) {}
// }
use self::imp::*;
pub extern fn init(busno: u32) {
// Set SCL as output, and high level
scl_o(busno, true);
scl_oe(busno, true);
// Prepare a zero level on SDA so that sda_oe pulls it down
sda_o(busno, false);
// Release SDA
sda_oe(busno, false);
// Check the I2C bus is ready
half_period();
half_period();
if !sda_i(busno) {
artiq_raise!("I2CError", "SDA is stuck low")
}
}
pub extern fn start(busno: u32) {
// Set SCL high then SDA low
scl_o(busno, true);
half_period();
sda_oe(busno, true);
half_period();
}
pub extern fn stop(busno: u32) {
// First, make sure SCL is low, so that the target releases the SDA line
scl_o(busno, false);
half_period();
// Set SCL high then SDA high
sda_oe(busno, true);
scl_o(busno, true);
half_period();
sda_oe(busno, false);
half_period();
}
pub extern fn write(busno: u32, data: u8) -> bool {
// MSB first
for bit in (0..8).rev() {
// Set SCL low and set our bit on SDA
scl_o(busno, false);
sda_oe(busno, data & (1 << bit) == 0);
half_period();
// Set SCL high ; data is shifted on the rising edge of SCL
scl_o(busno, true);
half_period();
}
// Check ack
// Set SCL low, then release SDA so that the I2C target can respond
scl_o(busno, false);
half_period();
sda_oe(busno, false);
// Set SCL high and check for ack
scl_o(busno, true);
half_period();
// returns true if acked (I2C target pulled SDA low)
!sda_i(busno)
}
pub extern fn read(busno: u32, ack: bool) -> u8 {
// Set SCL low first, otherwise setting SDA as input may cause a transition
// on SDA with SCL high which will be interpreted as START/STOP condition.
scl_o(busno, false);
half_period(); // make sure SCL has settled low
sda_oe(busno, false);
let mut data: u8 = 0;
// MSB first
for bit in (0..8).rev() {
scl_o(busno, false);
half_period();
// Set SCL high and shift data
scl_o(busno, true);
half_period();
if sda_i(busno) { data |= 1 << bit }
}
// Send ack
// Set SCL low and pull SDA low when acking
scl_o(busno, false);
if ack { sda_oe(busno, true) }
half_period();
// then set SCL high
scl_o(busno, true);
half_period();
data
}

View File

@ -23,6 +23,35 @@ mod rpc_proto;
mod dyld;
mod api;
#[allow(improper_ctypes)]
extern {
fn __artiq_raise(exn: *const ::kernel_proto::Exception) -> !;
}
macro_rules! artiq_raise {
($name:expr, $message:expr, $param0:expr, $param1:expr, $param2:expr) => ({
let exn = $crate::kernel_proto::Exception {
name: concat!("0:artiq.coredevice.exceptions.", $name, "\0").as_bytes().as_ptr(),
file: concat!(file!(), "\0").as_bytes().as_ptr(),
line: line!(),
column: column!(),
// https://github.com/rust-lang/rfcs/pull/1719
function: "(Rust function)\0".as_bytes().as_ptr(),
message: concat!($message, "\0").as_bytes().as_ptr(),
param: [$param0, $param1, $param2],
phantom: ::core::marker::PhantomData
};
#[allow(unused_unsafe)]
unsafe { $crate::__artiq_raise(&exn as *const _) }
});
($name:expr, $message:expr) => ({
artiq_raise!($name, $message, 0, 0, 0)
});
}
mod rtio;
mod i2c;
use core::{mem, ptr, slice, str};
use std::io::Cursor;
use libc::{c_char, size_t};
@ -91,12 +120,17 @@ extern fn panic_fmt(args: core::fmt::Arguments, file: &'static str, line: u32) -
static mut NOW: u64 = 0;
#[no_mangle]
pub extern fn send_to_log(ptr: *const u8, len: usize) {
pub extern fn send_to_core_log(ptr: *const u8, len: usize) {
send(&LogSlice(unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(ptr, len))
}))
}
#[no_mangle]
pub extern fn send_to_rtio_log(timestamp: i64, ptr: *const u8, len: usize) {
rtio::log(timestamp, unsafe { slice::from_raw_parts(ptr, len) })
}
extern fn abort() -> ! {
println!("kernel called abort()");
send(&RunAborted);
@ -151,28 +185,6 @@ extern fn recv_rpc(slot: *mut ()) -> usize {
})
}
#[allow(improper_ctypes)]
extern {
fn __artiq_raise(exn: *const ::kernel_proto::Exception) -> !;
}
macro_rules! artiq_raise {
($name:expr, $message:expr) => ({
let exn = Exception {
name: concat!("0:artiq.coredevice.exceptions.", $name, "\0").as_bytes().as_ptr(),
file: concat!(file!(), "\0").as_bytes().as_ptr(),
line: line!(),
column: column!(),
// https://github.com/rust-lang/rfcs/pull/1719
function: "(Rust function)\0".as_bytes().as_ptr(),
message: concat!($message, "\0").as_bytes().as_ptr(),
param: [0; 3],
phantom: ::core::marker::PhantomData
};
unsafe { __artiq_raise(&exn as *const _) }
})
}
#[no_mangle]
pub extern fn __artiq_terminate(exception: *const kernel_proto::Exception,
backtrace_data: *mut usize,

View File

@ -0,0 +1,148 @@
use board::csr;
const RTIO_O_STATUS_FULL: u32 = 1;
const RTIO_O_STATUS_UNDERFLOW: u32 = 2;
const RTIO_O_STATUS_SEQUENCE_ERROR: u32 = 4;
const RTIO_O_STATUS_COLLISION: u32 = 8;
const RTIO_O_STATUS_BUSY: u32 = 16;
const RTIO_I_STATUS_EMPTY: u32 = 1;
const RTIO_I_STATUS_OVERFLOW: u32 = 2;
pub extern fn init() {
unsafe {
csr::rtio::reset_write(1);
csr::rtio::reset_write(0);
csr::rtio::reset_phy_write(0);
}
}
pub extern fn get_counter() -> i64 {
unsafe {
csr::rtio::counter_update_write(1);
csr::rtio::counter_read() as i64
}
}
#[inline(never)]
unsafe fn process_exceptional_status(timestamp: i64, channel: u32, status: u32) {
if status & RTIO_O_STATUS_FULL != 0 {
while csr::rtio::o_status_read() & RTIO_O_STATUS_FULL != 0 {}
}
if status & RTIO_O_STATUS_UNDERFLOW != 0 {
csr::rtio::o_underflow_reset_write(1);
artiq_raise!("RTIOUnderflow",
"RTIO underflow at {0} mu, channel {1}, slack {2} mu",
timestamp, channel as i64, timestamp - get_counter())
}
if status & RTIO_O_STATUS_SEQUENCE_ERROR != 0 {
csr::rtio::o_sequence_error_reset_write(1);
artiq_raise!("RTIOSequenceError",
"RTIO sequence error at {0} mu, channel {1}",
timestamp, channel as i64, 0)
}
if status & RTIO_O_STATUS_COLLISION != 0 {
csr::rtio::o_collision_reset_write(1);
artiq_raise!("RTIOCollision",
"RTIO collision at {0} mu, channel {1}",
timestamp, channel as i64, 0)
}
if status & RTIO_O_STATUS_BUSY != 0 {
csr::rtio::o_busy_reset_write(1);
artiq_raise!("RTIOBusy",
"RTIO busy on channel {0}",
channel as i64, 0, 0)
}
}
pub extern fn output(timestamp: i64, channel: u32, addr: u32, data: u32) {
unsafe {
csr::rtio::chan_sel_write(channel);
csr::rtio::o_timestamp_write(timestamp as u64);
csr::rtio::o_address_write(addr);
csr::rtio::o_data_write(data);
csr::rtio::o_we_write(1);
let status = csr::rtio::o_status_read();
if status != 0 {
process_exceptional_status(timestamp, channel, status);
}
}
}
pub extern fn input_timestamp(timeout: i64, channel: u32) -> u64 {
unsafe {
csr::rtio::chan_sel_write(channel);
let mut status;
loop {
status = csr::rtio::i_status_read();
if status == 0 { break }
if status & RTIO_I_STATUS_OVERFLOW != 0 {
csr::rtio::i_overflow_reset_write(1);
break
}
if get_counter() >= timeout {
// check empty flag again to prevent race condition.
// now we are sure that the time limit has been exceeded.
let status = csr::rtio::i_status_read();
if status & RTIO_I_STATUS_EMPTY != 0 { break }
}
// input FIFO is empty - keep waiting
}
if status & RTIO_I_STATUS_OVERFLOW != 0 {
artiq_raise!("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel as i64, 0, 0);
}
if status & RTIO_I_STATUS_EMPTY != 0 {
return !0
}
let timestamp = csr::rtio::i_timestamp_read();
csr::rtio::i_re_write(1);
timestamp
}
}
pub extern fn input_data(channel: u32) -> u32 {
unsafe {
csr::rtio::chan_sel_write(channel);
loop {
let status = csr::rtio::i_status_read();
if status == 0 { break }
if status & RTIO_I_STATUS_OVERFLOW != 0 {
csr::rtio::i_overflow_reset_write(1);
artiq_raise!("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel as i64, 0, 0);
}
}
let data = csr::rtio::i_data_read();
csr::rtio::i_re_write(1);
data
}
}
pub fn log(timestamp: i64, data: &[u8]) {
unsafe {
csr::rtio::chan_sel_write(csr::CONFIG_RTIO_LOG_CHANNEL);
csr::rtio::o_timestamp_write(timestamp as u64);
let mut word: u32 = 0;
for i in 0..data.len() {
word <<= 8;
word |= data[i] as u32;
if i % 4 == 0 {
csr::rtio::o_data_write(word);
csr::rtio::o_we_write(1);
word = 0;
}
}
word <<= 8;
csr::rtio::o_data_write(word);
csr::rtio::o_we_write(1);
}
}

View File

@ -17,7 +17,7 @@ pub struct Exception<'a> {
pub column: u32,
pub function: *const u8,
pub message: *const u8,
pub param: [u64; 3],
pub param: [i64; 3],
pub phantom: PhantomData<&'a str>
}

View File

@ -2,6 +2,7 @@ use std::prelude::v1::*;
use std::{mem, str};
use std::cell::RefCell;
use std::io::{self, Read, Write, BufWriter};
use std::btree_set::BTreeSet;
use {config, rtio_crg, clock, mailbox, rpc_queue, kernel};
use logger::BufferLogger;
use cache::Cache;
@ -57,7 +58,8 @@ struct Session<'a> {
congress: &'a mut Congress,
kernel_state: KernelState,
watchdog_set: clock::WatchdogSet,
log_buffer: String
log_buffer: String,
interner: BTreeSet<String>
}
impl<'a> Session<'a> {
@ -66,7 +68,8 @@ impl<'a> Session<'a> {
congress: congress,
kernel_state: KernelState::Absent,
watchdog_set: clock::WatchdogSet::new(),
log_buffer: String::new()
log_buffer: String::new(),
interner: BTreeSet::new()
}
}
@ -309,20 +312,20 @@ fn process_host_message(waiter: Waiter,
}));
// FIXME: gross.
fn into_c_str(s: String) -> *const u8 {
fn into_c_str(interner: &mut BTreeSet<String>, s: String) -> *const u8 {
let s = s + "\0";
let p = s.as_bytes().as_ptr();
mem::forget(s);
interner.insert(s.clone());
let p = interner.get(&s).unwrap().as_bytes().as_ptr();
p
}
let exn = kern::Exception {
name: into_c_str(name),
message: into_c_str(message),
name: into_c_str(&mut session.interner, name),
message: into_c_str(&mut session.interner, message),
param: param,
file: into_c_str(file),
file: into_c_str(&mut session.interner, file),
line: line,
column: column,
function: into_c_str(function),
function: into_c_str(&mut session.interner, function),
phantom: ::core::marker::PhantomData
};
try!(kern_send(waiter, &kern::RpcRecvReply(Err(exn))));

View File

@ -30,7 +30,7 @@ pub enum Request {
RpcException {
name: String,
message: String,
param: [u64; 3],
param: [i64; 3],
file: String,
line: u32,
column: u32,
@ -59,9 +59,9 @@ impl Request {
8 => Request::RpcException {
name: try!(read_string(reader)),
message: try!(read_string(reader)),
param: [try!(read_u64(reader)),
try!(read_u64(reader)),
try!(read_u64(reader))],
param: [try!(read_u64(reader).map(|x| x as i64)),
try!(read_u64(reader).map(|x| x as i64)),
try!(read_u64(reader).map(|x| x as i64))],
file: try!(read_string(reader)),
line: try!(read_u32(reader)),
column: try!(read_u32(reader)),
@ -99,7 +99,7 @@ pub enum Reply<'a> {
KernelException {
name: &'a str,
message: &'a str,
param: [u64; 3],
param: [i64; 3],
file: &'a str,
line: u32,
column: u32,
@ -157,9 +157,9 @@ impl<'a> Reply<'a> {
try!(write_u8(writer, 9));
try!(write_string(writer, name));
try!(write_string(writer, message));
try!(write_u64(writer, param[0]));
try!(write_u64(writer, param[1]));
try!(write_u64(writer, param[2]));
try!(write_u64(writer, param[0] as u64));
try!(write_u64(writer, param[1] as u64));
try!(write_u64(writer, param[2] as u64));
try!(write_string(writer, file));
try!(write_u32(writer, line));
try!(write_u32(writer, column));

View File

@ -4,7 +4,7 @@ include $(MISOC_DIRECTORY)/software/common.mak
PYTHON ?= python3.5
OBJECTS := flash_storage.o main.o
OBJECTS_KSUPPORT := ksupport_glue.o artiq_personality.o rtio.o i2c.o ad9154.o
OBJECTS_KSUPPORT := ksupport_glue.o artiq_personality.o ad9154.o
RUSTOUT_DIRECTORY := cargo/or1k-unknown-none/debug
CORE_IO_COMMIT := d40c593f42fafbac1ff3d827f6df96338b5b7d8b

View File

@ -1,192 +0,0 @@
#include <generated/csr.h>
#include "artiq_personality.h"
#include "i2c.h"
static void i2c_halfperiod()
{
timer_kernel_en_write(0);
timer_kernel_load_write(CONFIG_CLOCK_FREQUENCY/10000);
timer_kernel_reload_write(0);
timer_kernel_en_write(1);
timer_kernel_update_value_write(1);
while(timer_kernel_value_read() != 0)
timer_kernel_update_value_write(1);
}
#if (defined CONFIG_I2C_BUS_COUNT) && (CONFIG_I2C_BUS_COUNT > 0)
#define SDA_BIT (1 << (2*busno + 1))
#define SCL_BIT (1 << (2*busno))
static int i2c_sda_i(int busno)
{
if(busno >= CONFIG_I2C_BUS_COUNT)
return 1;
else
return i2c_in_read() & SDA_BIT;
}
static void i2c_sda_oe(int busno, int oe)
{
int reg;
reg = i2c_oe_read();
if(oe)
reg |= SDA_BIT;
else
reg &= ~SDA_BIT;
i2c_oe_write(reg);
}
static void i2c_sda_o(int busno, int o)
{
int reg;
reg = i2c_out_read();
if(o)
reg |= SDA_BIT;
else
reg &= ~SDA_BIT;
i2c_out_write(reg);
}
static void i2c_scl_oe(int busno, int oe)
{
int reg;
reg = i2c_oe_read();
if(oe)
reg |= SCL_BIT;
else
reg &= ~SCL_BIT;
i2c_oe_write(reg);
}
static void i2c_scl_o(int busno, int o)
{
int reg;
reg = i2c_out_read();
if(o)
reg |= SCL_BIT;
else
reg &= ~SCL_BIT;
i2c_out_write(reg);
}
#else
static int i2c_sda_i(int busno)
{
return 1;
}
static void i2c_sda_oe(int busno, int oe) {}
static void i2c_sda_o(int busno, int o) {}
static void i2c_scl_oe(int busno, int oe) {}
static void i2c_scl_o(int busno, int o) {}
#endif
void i2c_init(int busno)
{
/* Set SCL as output, and high level */
i2c_scl_o(busno, 1);
i2c_scl_oe(busno, 1);
/* Prepare a zero level on SDA so that i2c_sda_oe pulls it down */
i2c_sda_o(busno, 0);
/* Release SDA */
i2c_sda_oe(busno, 0);
/* Check the I2C bus is ready */
i2c_halfperiod();
i2c_halfperiod();
if(!i2c_sda_i(busno))
artiq_raise_from_c("I2CError", "SDA is stuck low", 0, 0, 0);
}
void i2c_start(int busno)
{
/* Set SCL high then SDA low */
i2c_scl_o(busno, 1);
i2c_halfperiod();
i2c_sda_oe(busno, 1);
i2c_halfperiod();
}
void i2c_stop(int busno)
{
/* First, make sure SCL is low, so that the target releases the SDA line */
i2c_scl_o(busno, 0);
i2c_halfperiod();
/* Set SCL high then SDA high */
i2c_sda_oe(busno, 1);
i2c_scl_o(busno, 1);
i2c_halfperiod();
i2c_sda_oe(busno, 0);
i2c_halfperiod();
}
int i2c_write(int busno, int b)
{
int i;
/* MSB first */
for(i=7;i>=0;i--) {
/* Set SCL low and set our bit on SDA */
i2c_scl_o(busno, 0);
i2c_sda_oe(busno, b & (1 << i) ? 0 : 1);
i2c_halfperiod();
/* Set SCL high ; data is shifted on the rising edge of SCL */
i2c_scl_o(busno, 1);
i2c_halfperiod();
}
/* Check ack */
/* Set SCL low, then release SDA so that the I2C target can respond */
i2c_scl_o(busno, 0);
i2c_halfperiod();
i2c_sda_oe(busno, 0);
/* Set SCL high and check for ack */
i2c_scl_o(busno, 1);
i2c_halfperiod();
/* returns 1 if acked (I2C target pulled SDA low) */
return !i2c_sda_i(busno);
}
int i2c_read(int busno, int ack)
{
int i;
unsigned char b;
/* Set SCL low first, otherwise setting SDA as input may cause a transition
* on SDA with SCL high which will be interpreted as START/STOP condition.
*/
i2c_scl_o(busno, 0);
i2c_halfperiod(); /* make sure SCL has settled low */
i2c_sda_oe(busno, 0);
b = 0;
/* MSB first */
for(i=7;i>=0;i--) {
i2c_scl_o(busno, 0);
i2c_halfperiod();
/* Set SCL high and shift data */
i2c_scl_o(busno, 1);
i2c_halfperiod();
if(i2c_sda_i(busno)) b |= (1 << i);
}
/* Send ack */
/* Set SCL low and pull SDA low when acking */
i2c_scl_o(busno, 0);
if(ack)
i2c_sda_oe(busno, 1);
i2c_halfperiod();
/* then set SCL high */
i2c_scl_o(busno, 1);
i2c_halfperiod();
return b;
}

View File

@ -1,10 +0,0 @@
#ifndef __I2C_H
#define __I2C_H
void i2c_init(int busno);
void i2c_start(int busno);
void i2c_stop(int busno);
int i2c_write(int busno, int b);
int i2c_read(int busno, int ack);
#endif

View File

@ -6,7 +6,8 @@
#include <link.h>
#include <dlfcn.h>
void send_to_log(const char *ptr, size_t length);
void send_to_core_log(const char *ptr, size_t length);
void send_to_rtio_log(long long int timestamp, const char *ptr, size_t length);
#define KERNELCPU_EXEC_ADDRESS 0x40800000
#define KERNELCPU_PAYLOAD_ADDRESS 0x40840000
@ -16,20 +17,18 @@ void send_to_log(const char *ptr, size_t length);
/* called by libunwind */
int fprintf(FILE *stream, const char *fmt, ...)
{
size_t size;
char *buf;
va_list args;
va_start(args, fmt);
size = vsnprintf(NULL, 0, fmt, args);
buf = __builtin_alloca(size + 1);
size_t size = vsnprintf(NULL, 0, fmt, args);
char *buf = __builtin_alloca(size + 1);
va_end(args);
va_start(args, fmt);
vsnprintf(buf, size + 1, fmt, args);
va_end(args);
send_to_log(buf, size);
send_to_core_log(buf, size);
return 0;
}
@ -103,19 +102,35 @@ double round(double x)
int core_log(const char *fmt, ...);
int core_log(const char *fmt, ...)
{
size_t size;
char *buf;
va_list args;
va_start(args, fmt);
size = vsnprintf(NULL, 0, fmt, args);
buf = __builtin_alloca(size + 1);
size_t size = vsnprintf(NULL, 0, fmt, args);
char *buf = __builtin_alloca(size + 1);
va_end(args);
va_start(args, fmt);
vsnprintf(buf, size + 1, fmt, args);
va_end(args);
send_to_log(buf, size);
send_to_core_log(buf, size);
return 0;
}
/* called by kernel */
void rtio_log(long long int timestamp, const char *fmt, ...);
void rtio_log(long long int timestamp, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
size_t size = vsnprintf(NULL, 0, fmt, args);
char *buf = __builtin_alloca(size + 1);
va_end(args);
va_start(args, fmt);
vsnprintf(buf, size + 1, fmt, args);
va_end(args);
send_to_rtio_log(timestamp, buf, size);
}

View File

@ -1,166 +0,0 @@
#include <generated/csr.h>
#include "artiq_personality.h"
#include "rtio.h"
void rtio_init(void)
{
rtio_reset_write(1);
rtio_reset_write(0);
rtio_reset_phy_write(0);
}
long long int rtio_get_counter(void)
{
rtio_counter_update_write(1);
return rtio_counter_read();
}
static void rtio_process_exceptional_status(
long long int timestamp, int channel, int status)
{
if(status & RTIO_O_STATUS_FULL)
while(rtio_o_status_read() & RTIO_O_STATUS_FULL);
if(status & RTIO_O_STATUS_UNDERFLOW) {
rtio_o_underflow_reset_write(1);
artiq_raise_from_c("RTIOUnderflow",
"RTIO underflow at {0} mu, channel {1}, slack {2} mu",
timestamp, channel, timestamp - rtio_get_counter());
}
if(status & RTIO_O_STATUS_SEQUENCE_ERROR) {
rtio_o_sequence_error_reset_write(1);
artiq_raise_from_c("RTIOSequenceError",
"RTIO sequence error at {0} mu, channel {1}",
timestamp, channel, 0);
}
if(status & RTIO_O_STATUS_COLLISION) {
rtio_o_collision_reset_write(1);
artiq_raise_from_c("RTIOCollision",
"RTIO collision at {0} mu, channel {1}",
timestamp, channel, 0);
}
if(status & RTIO_O_STATUS_BUSY) {
rtio_o_busy_reset_write(1);
artiq_raise_from_c("RTIOBusy",
"RTIO busy on channel {0}",
channel, 0, 0);
}
}
void rtio_output(long long int timestamp, int channel, unsigned int addr,
unsigned int data)
{
int status;
rtio_chan_sel_write(channel);
rtio_o_timestamp_write(timestamp);
#ifdef CSR_RTIO_O_ADDRESS_ADDR
rtio_o_address_write(addr);
#endif
rtio_o_data_write(data);
rtio_o_we_write(1);
status = rtio_o_status_read();
if(status)
rtio_process_exceptional_status(timestamp, channel, status);
}
long long int rtio_input_timestamp(long long int timeout, int channel)
{
long long int r;
int status;
rtio_chan_sel_write(channel);
while((status = rtio_i_status_read())) {
if(status & RTIO_I_STATUS_OVERFLOW) {
rtio_i_overflow_reset_write(1);
break;
}
if(rtio_get_counter() >= timeout) {
/* check empty flag again to prevent race condition.
* now we are sure that the time limit has been exceeded.
*/
status = rtio_i_status_read();
if(status & RTIO_I_STATUS_EMPTY)
break;
}
/* input FIFO is empty - keep waiting */
}
if (status & RTIO_I_STATUS_OVERFLOW)
artiq_raise_from_c("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel, 0, 0);
if (status & RTIO_I_STATUS_EMPTY)
return -1;
r = rtio_i_timestamp_read();
rtio_i_re_write(1);
return r;
}
unsigned int rtio_input_data(int channel)
{
unsigned int data;
int status;
rtio_chan_sel_write(channel);
while((status = rtio_i_status_read())) {
if(status & RTIO_I_STATUS_OVERFLOW) {
rtio_i_overflow_reset_write(1);
artiq_raise_from_c("RTIOOverflow",
"RTIO input overflow on channel {0}",
channel, 0, 0);
}
}
data = rtio_i_data_read();
rtio_i_re_write(1);
return data;
}
void rtio_log_va(long long int timestamp, const char *fmt, va_list args)
{
#ifdef CONFIG_RTIO_LOG_CHANNEL
// This executes on the kernel CPU's stack, which is specifically designed
// for allocation of this kind of massive buffers.
int len = vsnprintf(NULL, 0, fmt, args);
char *buf = __builtin_alloca(len + 1);
vsnprintf(buf, len + 1, fmt, args);
rtio_chan_sel_write(CONFIG_RTIO_LOG_CHANNEL);
rtio_o_timestamp_write(timestamp);
int i = 0;
unsigned int word = 0;
while(1) {
word <<= 8;
word |= *buf & 0xff;
if(*buf == 0) {
rtio_o_data_write(word);
rtio_o_we_write(1);
break;
}
buf++;
i++;
if(i == 4) {
rtio_o_data_write(word);
rtio_o_we_write(1);
word = 0;
i = 0;
}
}
#endif
}
void rtio_log(long long int timestamp, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
rtio_log_va(timestamp, fmt, args);
va_end(args);
}

View File

@ -1,33 +0,0 @@
#ifndef __RTIO_H
#define __RTIO_H
#include <stdarg.h>
#define RTIO_O_STATUS_FULL 1
#define RTIO_O_STATUS_UNDERFLOW 2
#define RTIO_O_STATUS_SEQUENCE_ERROR 4
#define RTIO_O_STATUS_COLLISION 8
#define RTIO_O_STATUS_BUSY 16
#define RTIO_I_STATUS_EMPTY 1
#define RTIO_I_STATUS_OVERFLOW 2
void rtio_init(void);
long long int rtio_get_counter(void);
void rtio_log(long long int timestamp, const char *format, ...);
void rtio_log_va(long long int timestamp, const char *format, va_list args);
void rtio_output(long long int timestamp, int channel, unsigned int address,
unsigned int data);
/*
* Waits at least until timeout and returns the timestamp of the first
* input event on the chanel, -1 if there was no event.
*/
long long int rtio_input_timestamp(long long int timeout, int channel);
/*
* Assumes that there is or will be an event in the channel and returns only
* its data.
*/
unsigned int rtio_input_data(int channel);
#endif /* __RTIO_H */