phaser: port to NAC3

This commit is contained in:
Sebastien Bourdeauducq 2022-02-28 17:00:24 +08:00
parent a407007e0b
commit ea55c29568
3 changed files with 210 additions and 166 deletions

View File

@ -1,13 +1,28 @@
from __future__ import annotations
from numpy import int32, int64
from artiq.language.core import kernel, delay_mu, delay
from artiq.language.core import *
from artiq.coredevice.core import Core
from artiq.coredevice.rtio import rtio_output, rtio_input_data, rtio_input_timestamp
from artiq.language.units import us, ns, ms, MHz
from artiq.language.types import TInt32
from artiq.coredevice.dac34h84 import DAC34H84
from artiq.coredevice.trf372017 import TRF372017
# NAC3TODO work around https://git.m-labs.hk/M-Labs/nac3/issues/189
@nac3
class ValueError(Exception):
pass
# NAC3TODO https://git.m-labs.hk/M-Labs/nac3/issues/201
@portable
def abs(x: int32) -> int32:
if x > 0:
return x
else:
return -x
PHASER_BOARD_ID = 19
PHASER_ADDR_BOARD_ID = 0x00
PHASER_ADDR_HW_REV = 0x01
@ -59,6 +74,7 @@ PHASER_DAC_SEL_TEST = 1
PHASER_HW_REV_VARIANT = 1 << 4
@nac3
class Phaser:
"""Phaser 4-channel, 16-bit, 1 GS/s DAC coredevice driver.
@ -133,7 +149,7 @@ class Phaser:
and buffer round trip. Tuning this might be automated later.
:param tune_fifo_offset: Tune the DAC FIFO read pointer offset
(default=True)
:param clk_sel: Select the external SMA clock input (1 or 0)
:param clk_sel: Select the external SMA clock input.
:param sync_dly: SYNC delay with respect to ISTR.
:param dac: DAC34H84 DAC settings as a dictionary.
:param trf0: Channel 0 TRF372017 quadrature upconverter settings as a
@ -147,11 +163,20 @@ class Phaser:
To access oscillators, digital upconverters, PLL/VCO analog
quadrature upconverters and attenuators.
"""
kernel_invariants = {"core", "channel_base", "t_frame", "miso_delay",
"dac_mmap"}
core: KernelInvariant[Core]
channel_base: KernelInvariant[int32]
t_frame: KernelInvariant[int32]
miso_delay: KernelInvariant[int32]
frame_tstamp: Kernel[int64]
clk_sel: Kernel[bool]
tune_fifo_offset: Kernel[bool]
sync_dly: Kernel[int32]
dac_mmap: KernelInvariant[list[int32]]
channel: Kernel[list[PhaserChannel]]
def __init__(self, dmgr, channel_base, miso_delay=1, tune_fifo_offset=True,
clk_sel=0, sync_dly=0, dac=None, trf0=None, trf1=None,
clk_sel=False, sync_dly=0, dac=None, trf0=None, trf1=None,
core_device="core"):
self.channel_base = channel_base
self.core = dmgr.get(core_device)
@ -172,7 +197,7 @@ class Phaser:
for ch, trf in enumerate([trf0, trf1])]
@kernel
def init(self, debug=False):
def init(self, debug: bool = False):
"""Initialize the board.
Verifies board and chip presence, resets components, performs
@ -182,40 +207,40 @@ class Phaser:
board_id = self.read8(PHASER_ADDR_BOARD_ID)
if board_id != PHASER_BOARD_ID:
raise ValueError("invalid board id")
delay(.1*ms) # slack
self.core.delay(.1*ms) # slack
hw_rev = self.read8(PHASER_ADDR_HW_REV)
delay(.1*ms) # slack
is_baseband = hw_rev & PHASER_HW_REV_VARIANT
self.core.delay(.1*ms) # slack
is_baseband = hw_rev & PHASER_HW_REV_VARIANT != 0
gw_rev = self.read8(PHASER_ADDR_GW_REV)
if debug:
print("gw_rev:", gw_rev)
# NAC3TODO print("gw_rev:", gw_rev)
self.core.break_realtime()
delay(.1*ms) # slack
self.core.delay(.1*ms) # slack
# allow a few errors during startup and alignment since boot
if self.get_crc_err() > 20:
raise ValueError("large number of frame CRC errors")
delay(.1*ms) # slack
self.core.delay(.1*ms) # slack
# determine the origin for frame-aligned timestamps
self.measure_frame_timestamp()
if self.frame_tstamp < 0:
if self.frame_tstamp < int64(0):
raise ValueError("frame timestamp measurement timed out")
delay(.1*ms)
self.core.delay(.1*ms)
# reset
self.set_cfg(dac_resetb=0, dac_sleep=1, dac_txena=0,
trf0_ps=1, trf1_ps=1,
att0_rstn=0, att1_rstn=0)
self.set_cfg(dac_resetb=False, dac_sleep=True, dac_txena=False,
trf0_ps=True, trf1_ps=True,
att0_rstn=False, att1_rstn=False)
self.set_leds(0x00)
self.set_fan_mu(0)
# bring dac out of reset, keep tx off
self.set_cfg(clk_sel=self.clk_sel, dac_txena=0,
trf0_ps=1, trf1_ps=1,
att0_rstn=0, att1_rstn=0)
delay(.1*ms) # slack
self.set_cfg(clk_sel=self.clk_sel, dac_txena=False,
trf0_ps=True, trf1_ps=True,
att0_rstn=False, att1_rstn=False)
self.core.delay(.1*ms) # slack
# crossing dac_clk (reference) edges with sync_dly
# changes the optimal fifo_offset by 4
@ -225,25 +250,25 @@ class Phaser:
self.dac_write(0x02, 0x0080)
if self.dac_read(0x7f) != 0x5409:
raise ValueError("DAC version readback invalid")
delay(.1*ms)
self.core.delay(.1*ms)
if self.dac_read(0x00) != 0x049c:
raise ValueError("DAC config0 reset readback invalid")
delay(.1*ms)
self.core.delay(.1*ms)
t = self.get_dac_temperature()
delay(.1*ms)
self.core.delay(.1*ms)
if t < 10 or t > 90:
raise ValueError("DAC temperature out of bounds")
for data in self.dac_mmap:
self.dac_write(data >> 16, data)
delay(40*us)
self.core.delay(40.*us)
self.dac_sync()
delay(40*us)
self.core.delay(40.*us)
# pll_ndivsync_ena disable
config18 = self.dac_read(0x18)
delay(.1*ms)
self.core.delay(.1*ms)
self.dac_write(0x18, config18 & ~0x0800)
patterns = [
@ -256,33 +281,33 @@ class Phaser:
# either side) and no need to tune at runtime.
# Parity provides another level of safety.
for i in range(len(patterns)):
delay(.5*ms)
self.core.delay(.5*ms)
errors = self.dac_iotest(patterns[i])
if errors:
if errors != 0:
raise ValueError("DAC iotest failure")
delay(2*ms) # let it settle
self.core.delay(2.*ms) # let it settle
lvolt = self.dac_read(0x18) & 7
delay(.1*ms)
self.core.delay(.1*ms)
if lvolt < 2 or lvolt > 5:
raise ValueError("DAC PLL lock failed, check clocking")
if self.tune_fifo_offset:
fifo_offset = self.dac_tune_fifo_offset()
if debug:
print("fifo_offset:", fifo_offset)
# NAC3TODO print("fifo_offset:", fifo_offset)
self.core.break_realtime()
# self.dac_write(0x20, 0x0000) # stop fifo sync
# alarm = self.get_sta() & 1
# delay(.1*ms)
# self.core.delay(.1*ms)
self.clear_dac_alarms()
delay(2*ms) # let it run a bit
self.core.delay(2.*ms) # let it run a bit
alarms = self.get_dac_alarms()
delay(.1*ms) # slack
if alarms & ~0x0040: # ignore PLL alarms (see DS)
self.core.delay(.1*ms) # slack
if alarms & ~0x0040 != 0: # ignore PLL alarms (see DS)
if debug:
print("alarms:", alarms)
# NAC3TODO print("alarms:", alarms)
self.core.break_realtime()
# ignore alarms
else:
@ -290,16 +315,16 @@ class Phaser:
# avoid malformed output for: mixer_ena=1, nco_ena=0 after power up
self.dac_write(self.dac_mmap[2] >> 16, self.dac_mmap[2] | (1 << 4))
delay(40*us)
self.core.delay(40.*us)
self.dac_sync()
delay(100*us)
self.core.delay(100.*us)
self.dac_write(self.dac_mmap[2] >> 16, self.dac_mmap[2])
delay(40*us)
self.core.delay(40.*us)
self.dac_sync()
delay(100*us)
self.core.delay(100.*us)
# power up trfs, release att reset
self.set_cfg(clk_sel=self.clk_sel, dac_txena=0)
self.set_cfg(clk_sel=self.clk_sel, dac_txena=False)
for ch in range(2):
channel = self.channel[ch]
@ -307,7 +332,7 @@ class Phaser:
channel.set_att_mu(0x5a)
if channel.get_att_mu() != 0x5a:
raise ValueError("attenuator test failed")
delay(.1*ms)
self.core.delay(.1*ms)
channel.set_att_mu(0x00) # minimum attenuation
# test oscillators and DUC
@ -317,18 +342,18 @@ class Phaser:
if i == 0:
asf = 0x7fff
# 6pi/4 phase
oscillator.set_amplitude_phase_mu(asf=asf, pow=0xc000, clr=1)
delay(1*us)
oscillator.set_amplitude_phase_mu(asf=asf, pow=0xc000, clr=True)
self.core.delay(1.*us)
# 3pi/4
channel.set_duc_phase_mu(0x6000)
channel.set_duc_cfg(select=0, clr=1)
channel.set_duc_cfg(select=0, clr=True)
self.duc_stb()
delay(.1*ms) # settle link, pipeline and impulse response
self.core.delay(.1*ms) # settle link, pipeline and impulse response
data = channel.get_dac_data()
delay(1*us)
self.core.delay(1.*us)
channel.oscillator[0].set_amplitude_phase_mu(asf=0, pow=0xc000,
clr=1)
delay(.1*ms)
clr=True)
self.core.delay(.1*ms)
sqrt2 = 0x5a81 # 0x7fff/sqrt(2)
data_i = data & 0xffff
data_q = (data >> 16) & 0xffff
@ -342,27 +367,27 @@ class Phaser:
if channel.trf_read(0) & 0x7f != 0x68:
raise ValueError("TRF identification failed")
delay(.1*ms)
self.core.delay(.1*ms)
delay(.2*ms)
self.core.delay(.2*ms)
for data in channel.trf_mmap:
channel.trf_write(data)
channel.cal_trf_vco()
delay(2*ms) # lock
self.core.delay(2.*ms) # lock
if not (self.get_sta() & (PHASER_STA_TRF0_LD << ch)):
raise ValueError("TRF lock failure")
delay(.1*ms)
if channel.trf_read(0) & 0x1000:
self.core.delay(.1*ms)
if channel.trf_read(0) & 0x1000 != 0:
raise ValueError("TRF R_SAT_ERR")
delay(.1*ms)
self.core.delay(.1*ms)
channel.en_trf_out()
# enable dac tx
self.set_cfg(clk_sel=self.clk_sel)
@kernel
def write8(self, addr, data):
def write8(self, addr: int32, data: int32):
"""Write data to FPGA register.
:param addr: Address to write to (7 bit)
@ -372,7 +397,7 @@ class Phaser:
delay_mu(int64(self.t_frame))
@kernel
def read8(self, addr) -> TInt32:
def read8(self, addr: int32) -> int32:
"""Read from FPGA register.
:param addr: Address to read from (7 bit)
@ -383,7 +408,7 @@ class Phaser:
return response >> self.miso_delay
@kernel
def write32(self, addr, data: TInt32):
def write32(self, addr: int32, data: int32):
"""Write 32 bit to a sequence of FPGA registers."""
for offset in range(4):
byte = data >> 24
@ -391,17 +416,17 @@ class Phaser:
data <<= 8
@kernel
def read32(self, addr) -> TInt32:
def read32(self, addr: int32) -> int32:
"""Read 32 bit from a sequence of FPGA registers."""
data = 0
for offset in range(4):
data <<= 8
data |= self.read8(addr + offset)
delay(20*us) # slack
self.core.delay(20.*us) # slack
return data
@kernel
def set_leds(self, leds):
def set_leds(self, leds: int32):
"""Set the front panel LEDs.
:param leds: LED settings (6 bit)
@ -409,7 +434,7 @@ class Phaser:
self.write8(PHASER_ADDR_LED, leds)
@kernel
def set_fan_mu(self, pwm):
def set_fan_mu(self, pwm: int32):
"""Set the fan duty cycle.
:param pwm: Duty cycle in machine units (8 bit)
@ -417,19 +442,19 @@ class Phaser:
self.write8(PHASER_ADDR_FAN, pwm)
@kernel
def set_fan(self, duty):
def set_fan(self, duty: float):
"""Set the fan duty cycle.
:param duty: Duty cycle (0. to 1.)
"""
pwm = int32(round(duty*255.))
pwm = round(duty*255.)
if pwm < 0 or pwm > 255:
raise ValueError("duty cycle out of bounds")
self.set_fan_mu(pwm)
@kernel
def set_cfg(self, clk_sel=0, dac_resetb=1, dac_sleep=0, dac_txena=1,
trf0_ps=0, trf1_ps=0, att0_rstn=1, att1_rstn=1):
def set_cfg(self, clk_sel: bool = False, dac_resetb: bool = True, dac_sleep: bool = False, dac_txena: bool = True,
trf0_ps: bool = False, trf1_ps: bool = False, att0_rstn: bool = True, att1_rstn: bool = True):
"""Set the configuration register.
Each flag is a single bit (0 or 1).
@ -444,13 +469,13 @@ class Phaser:
:param att1_rstn: Active low attenuator 1 reset
"""
self.write8(PHASER_ADDR_CFG,
((clk_sel & 1) << 0) | ((dac_resetb & 1) << 1) |
((dac_sleep & 1) << 2) | ((dac_txena & 1) << 3) |
((trf0_ps & 1) << 4) | ((trf1_ps & 1) << 5) |
((att0_rstn & 1) << 6) | ((att1_rstn & 1) << 7))
(int32(clk_sel) << 0) | (int32(dac_resetb) << 1) |
(int32(dac_sleep) << 2) | (int32(dac_txena) << 3) |
(int32(trf0_ps) << 4) | (int32(trf1_ps) << 5) |
(int32(att0_rstn) << 6) | (int32(att1_rstn) << 7))
@kernel
def get_sta(self):
def get_sta(self) -> int32:
"""Get the status register value.
Bit flags are:
@ -468,7 +493,7 @@ class Phaser:
return self.read8(PHASER_ADDR_STA)
@kernel
def get_crc_err(self):
def get_crc_err(self) -> int32:
"""Get the frame CRC error counter.
:return: The number of frames with CRC mismatches sind the reset of the
@ -484,21 +509,21 @@ class Phaser:
See `get_next_frame_mu()`.
"""
rtio_output(self.channel_base << 8, 0) # read any register
self.frame_tstamp = rtio_input_timestamp(now_mu() + 4 * self.t_frame, self.channel_base)
delay(100 * us)
self.frame_tstamp = rtio_input_timestamp(now_mu() + int64(4) * int64(self.t_frame), self.channel_base)
self.core.delay(100. * us)
@kernel
def get_next_frame_mu(self):
def get_next_frame_mu(self) -> int64:
"""Return the timestamp of the frame strictly after `now_mu()`.
Register updates (DUC, DAC, TRF, etc.) scheduled at this timestamp and multiples
of `self.t_frame` later will have deterministic latency to output.
"""
n = int64((now_mu() - self.frame_tstamp) / self.t_frame)
return self.frame_tstamp + (n + 1) * self.t_frame
n = int64((now_mu() - self.frame_tstamp) / int64(self.t_frame))
return self.frame_tstamp + (n + int64(1)) * int64(self.t_frame)
@kernel
def set_sync_dly(self, dly):
def set_sync_dly(self, dly: int32):
"""Set SYNC delay.
:param dly: DAC SYNC delay setting (0 to 7)
@ -517,8 +542,8 @@ class Phaser:
self.write8(PHASER_ADDR_DUC_STB, 0)
@kernel
def spi_cfg(self, select, div, end, clk_phase=0, clk_polarity=0,
half_duplex=0, lsb_first=0, offline=0, length=8):
def spi_cfg(self, select: int32, div: int32, end: bool, clk_phase: bool = False, clk_polarity: bool = False,
half_duplex: bool = False, lsb_first: bool = False, offline: bool = False, length: int32 = 8):
"""Set the SPI machine configuration
:param select: Chip selects to assert (DAC, TRF0, TRF1, ATT0, ATT1)
@ -538,63 +563,63 @@ class Phaser:
self.write8(PHASER_ADDR_SPI_SEL, select)
self.write8(PHASER_ADDR_SPI_DIVLEN, (div - 2 >> 3) | (length - 1 << 5))
self.write8(PHASER_ADDR_SPI_CFG,
((offline & 1) << 0) | ((end & 1) << 1) |
((clk_phase & 1) << 2) | ((clk_polarity & 1) << 3) |
((half_duplex & 1) << 4) | ((lsb_first & 1) << 5))
(int32(offline) << 0) | (int32(end) << 1) |
(int32(clk_phase) << 2) | (int32(clk_polarity) << 3) |
(int32(half_duplex) << 4) | (int32(lsb_first) << 5))
@kernel
def spi_write(self, data):
def spi_write(self, data: int32):
"""Write 8 bits into the SPI data register and start/continue the
transaction."""
self.write8(PHASER_ADDR_SPI_DATW, data)
@kernel
def spi_read(self):
def spi_read(self) -> int32:
"""Read from the SPI input data register."""
return self.read8(PHASER_ADDR_SPI_DATR)
@kernel
def dac_write(self, addr, data):
def dac_write(self, addr: int32, data: int32):
"""Write 16 bit to a DAC register.
:param addr: Register address
:param data: Register data to write
"""
div = 34 # 100 ns min period
t_xfer = self.core.seconds_to_mu((8 + 1)*div*4*ns)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=0)
t_xfer = self.core.seconds_to_mu((8. + 1.)*float(div)*4.*ns)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=False)
self.spi_write(addr)
delay_mu(t_xfer)
self.spi_write(data >> 8)
delay_mu(t_xfer)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=1)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=True)
self.spi_write(data)
delay_mu(t_xfer)
@kernel
def dac_read(self, addr, div=34) -> TInt32:
def dac_read(self, addr: int32, div: int32 = 34) -> int32:
"""Read from a DAC register.
:param addr: Register address to read from
:param div: SPI clock divider. Needs to be at least 250 (1 µs SPI
clock) to read the temperature register.
"""
t_xfer = self.core.seconds_to_mu((8 + 1)*div*4*ns)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=0)
t_xfer = self.core.seconds_to_mu((8. + 1.)*float(div)*4.*ns)
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=False)
self.spi_write(addr | 0x80)
delay_mu(t_xfer)
self.spi_write(0)
delay_mu(t_xfer)
data = self.spi_read() << 8
delay(20*us) # slack
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=1)
self.core.delay(20.*us) # slack
self.spi_cfg(select=PHASER_SEL_DAC, div=div, end=True)
self.spi_write(0)
delay_mu(t_xfer)
data |= self.spi_read()
return data
@kernel
def get_dac_temperature(self) -> TInt32:
def get_dac_temperature(self) -> int32:
"""Read the DAC die temperature.
:return: DAC temperature in degree Celsius
@ -617,12 +642,12 @@ class Phaser:
.. note:: Synchronising the NCO clears the phase-accumulator
"""
config1f = self.dac_read(0x1f)
delay(.1*ms)
self.core.delay(.1*ms)
self.dac_write(0x1f, config1f & ~int32(1 << 1))
self.dac_write(0x1f, config1f | (1 << 1))
@kernel
def set_dac_cmix(self, fs_8_step):
def set_dac_cmix(self, fs_8_step: int32):
"""Set the DAC coarse mixer frequency for both channels
Use of the coarse mixer requires the DAC mixer to be enabled. The mixer
@ -640,11 +665,11 @@ class Phaser:
vals = [0b0000, 0b1000, 0b0100, 0b1100, 0b0010, 0b1010, 0b0001, 0b1110]
cmix = vals[fs_8_step%8]
config0d = self.dac_read(0x0d)
delay(.1*ms)
self.core.delay(.1*ms)
self.dac_write(0x0d, (config0d & ~(0b1111 << 12)) | (cmix << 12))
@kernel
def get_dac_alarms(self):
def get_dac_alarms(self) -> int32:
"""Read the DAC alarm flags.
:return: DAC alarm flags (see datasheet for bit meaning)
@ -657,7 +682,7 @@ class Phaser:
self.dac_write(0x05, 0x0000)
@kernel
def dac_iotest(self, pattern) -> TInt32:
def dac_iotest(self, pattern: list[int32]) -> int32:
"""Performs a DAC IO test according to the datasheet.
:param pattern: List of four int32 containing the pattern
@ -669,7 +694,7 @@ class Phaser:
self.dac_write(0x25 + addr, pattern[addr])
# repeat the pattern twice
self.dac_write(0x29 + addr, pattern[addr])
delay(.1*ms)
self.core.delay(.1*ms)
for ch in range(2):
channel = self.channel[ch]
channel.set_duc_cfg(select=1) # test
@ -678,20 +703,20 @@ class Phaser:
channel.set_dac_test(data)
if channel.get_dac_data() != data:
raise ValueError("DAC test data readback failed")
delay(.1*ms)
self.core.delay(.1*ms)
cfg = self.dac_read(0x01)
delay(.1*ms)
self.core.delay(.1*ms)
self.dac_write(0x01, cfg | 0x8000) # iotest_ena
self.dac_write(0x04, 0x0000) # clear iotest_result
delay(.2*ms) # let it rip
self.core.delay(.2*ms) # let it rip
# no need to go through the alarm register,
# just read the error mask
# self.clear_dac_alarms()
alarms = self.get_dac_alarms()
delay(.1*ms) # slack
if alarms & 0x0080: # alarm_from_iotest
self.core.delay(.1*ms) # slack
if alarms & 0x0080 != 0: # alarm_from_iotest
errors = self.dac_read(0x04)
delay(.1*ms) # slack
self.core.delay(.1*ms) # slack
else:
errors = 0
self.dac_write(0x01, cfg) # clear config
@ -699,7 +724,7 @@ class Phaser:
return errors
@kernel
def dac_tune_fifo_offset(self):
def dac_tune_fifo_offset(self) -> int32:
"""Scan through `fifo_offset` and configure midpoint setting.
:return: Optimal `fifo_offset` setting with maximum margin to write
@ -712,15 +737,15 @@ class Phaser:
# distance 32101234
# error free x xx
config9 = self.dac_read(0x09)
delay(.1*ms)
self.core.delay(.1*ms)
good = 0
for o in range(8):
# set new fifo_offset
self.dac_write(0x09, (config9 & 0x1fff) | (o << 13))
self.clear_dac_alarms()
delay(.1*ms) # run
self.core.delay(.1*ms) # run
alarms = self.get_dac_alarms()
delay(.1*ms) # slack
self.core.delay(.1*ms) # slack
if (alarms >> 11) & 0x7 == 0: # any fifo alarm
good |= 1 << o
# if there are good offsets accross the wrap around
@ -734,7 +759,7 @@ class Phaser:
sum = 0
count = 0
for o in range(8):
if good & (1 << o):
if good & (1 << o) != 0:
sum += o
count += 1
best = ((sum // count) + offset) % 8
@ -742,6 +767,7 @@ class Phaser:
return best
@nac3
class PhaserChannel:
"""Phaser channel IQ pair.
@ -772,9 +798,15 @@ class PhaserChannel:
or overflow after the interpolation. Either band-limit any changes
in the oscillator parameters or back off the amplitude sufficiently.
"""
kernel_invariants = {"index", "phaser", "trf_mmap"}
core: KernelInvariant[Core]
phaser: KernelInvariant[Phaser]
index: KernelInvariant[int32]
trf_mmap: KernelInvariant[list[int32]]
oscillator: Kernel[list[PhaserOscillator]]
def __init__(self, phaser, index, trf):
self.core = phaser.core
self.phaser = phaser
self.index = index
self.trf_mmap = TRF372017(trf).get_mmap()
@ -782,7 +814,7 @@ class PhaserChannel:
self.oscillator = [PhaserOscillator(self, osc) for osc in range(5)]
@kernel
def get_dac_data(self) -> TInt32:
def get_dac_data(self) -> int32:
"""Get a sample of the current DAC data.
The data is split accross multiple registers and thus the data
@ -794,7 +826,7 @@ class PhaserChannel:
return self.phaser.read32(PHASER_ADDR_DAC0_DATA + (self.index << 4))
@kernel
def set_dac_test(self, data: TInt32):
def set_dac_test(self, data: int32):
"""Set the DAC test data.
:param data: 32 bit IQ test data, I/DACA/DACC in the 16 LSB,
@ -803,7 +835,7 @@ class PhaserChannel:
self.phaser.write32(PHASER_ADDR_DAC0_TEST + (self.index << 4), data)
@kernel
def set_duc_cfg(self, clr=0, clr_once=0, select=0):
def set_duc_cfg(self, clr: bool = False, clr_once: bool = False, select: int32 = 0):
"""Set the digital upconverter (DUC) and interpolator configuration.
:param clr: Keep the phase accumulator cleared (persistent)
@ -812,11 +844,11 @@ class PhaserChannel:
data, other values: reserved)
"""
self.phaser.write8(PHASER_ADDR_DUC0_CFG + (self.index << 4),
((clr & 1) << 0) | ((clr_once & 1) << 1) |
(int32(clr) << 0) | (int32(clr_once) << 1) |
((select & 3) << 2))
@kernel
def set_duc_frequency_mu(self, ftw):
def set_duc_frequency_mu(self, ftw: int32):
"""Set the DUC frequency.
:param ftw: DUC frequency tuning word (32 bit)
@ -824,17 +856,17 @@ class PhaserChannel:
self.phaser.write32(PHASER_ADDR_DUC0_F + (self.index << 4), ftw)
@kernel
def set_duc_frequency(self, frequency):
def set_duc_frequency(self, frequency: float):
"""Set the DUC frequency in SI units.
:param frequency: DUC frequency in Hz (passband from -200 MHz to
200 MHz, wrapping around at +- 250 MHz)
"""
ftw = int32(round(frequency*((1 << 30)/(125*MHz))))
ftw = round(frequency*(float(1 << 30)/(125.*MHz)))
self.set_duc_frequency_mu(ftw)
@kernel
def set_duc_phase_mu(self, pow):
def set_duc_phase_mu(self, pow: int32):
"""Set the DUC phase offset.
:param pow: DUC phase offset word (16 bit)
@ -844,16 +876,16 @@ class PhaserChannel:
self.phaser.write8(addr + 1, pow)
@kernel
def set_duc_phase(self, phase):
def set_duc_phase(self, phase: float):
"""Set the DUC phase in SI units.
:param phase: DUC phase in turns
"""
pow = int32(round(phase*(1 << 16)))
pow = round(phase*float(1 << 16))
self.set_duc_phase_mu(pow)
@kernel
def set_nco_frequency_mu(self, ftw):
def set_nco_frequency_mu(self, ftw: int32):
"""Set the NCO frequency.
This method stages the new NCO frequency, but does not apply it.
@ -868,7 +900,7 @@ class PhaserChannel:
self.phaser.dac_write(0x14 + (self.index << 1), ftw)
@kernel
def set_nco_frequency(self, frequency):
def set_nco_frequency(self, frequency: float):
"""Set the NCO frequency in SI units.
This method stages the new NCO frequency, but does not apply it.
@ -880,11 +912,11 @@ class PhaserChannel:
:param frequency: NCO frequency in Hz (passband from -400 MHz
to 400 MHz, wrapping around at +- 500 MHz)
"""
ftw = int32(round(frequency*((1 << 30)/(250*MHz))))
ftw = round(frequency*(float(1 << 30)/(250.*MHz)))
self.set_nco_frequency_mu(ftw)
@kernel
def set_nco_phase_mu(self, pow):
def set_nco_phase_mu(self, pow: int32):
"""Set the NCO phase offset.
By default, the new NCO phase applies on completion of the SPI
@ -902,7 +934,7 @@ class PhaserChannel:
self.phaser.dac_write(0x12 + self.index, pow)
@kernel
def set_nco_phase(self, phase):
def set_nco_phase(self, phase: float):
"""Set the NCO phase in SI units.
By default, the new NCO phase applies on completion of the SPI
@ -917,36 +949,36 @@ class PhaserChannel:
:param phase: NCO phase in turns
"""
pow = int32(round(phase*(1 << 16)))
pow = round(phase*float(1 << 16))
self.set_nco_phase_mu(pow)
@kernel
def set_att_mu(self, data):
def set_att_mu(self, data: int32):
"""Set channel attenuation.
:param data: Attenuator data in machine units (8 bit)
"""
div = 34 # 30 ns min period
t_xfer = self.phaser.core.seconds_to_mu((8 + 1)*div*4*ns)
t_xfer = self.core.seconds_to_mu((8. + 1.)*float(div)*4.*ns)
self.phaser.spi_cfg(select=PHASER_SEL_ATT0 << self.index, div=div,
end=1)
end=True)
self.phaser.spi_write(data)
delay_mu(t_xfer)
@kernel
def set_att(self, att):
def set_att(self, att: float):
"""Set channel attenuation in SI units.
:param att: Attenuation in dB
"""
# 2 lsb are inactive, resulting in 8 LSB per dB
data = 0xff - int32(round(att*8))
data = 0xff - round(att*8.)
if data < 0 or data > 0xff:
raise ValueError("attenuation out of bounds")
self.set_att_mu(data)
@kernel
def get_att_mu(self) -> TInt32:
def get_att_mu(self) -> int32:
"""Read current attenuation.
The current attenuation value is read without side effects.
@ -954,39 +986,39 @@ class PhaserChannel:
:return: Current attenuation in machine units
"""
div = 34
t_xfer = self.phaser.core.seconds_to_mu((8 + 1)*div*4*ns)
t_xfer = self.core.seconds_to_mu((8. + 1.)*float(div)*4.*ns)
self.phaser.spi_cfg(select=PHASER_SEL_ATT0 << self.index, div=div,
end=0)
end=False)
self.phaser.spi_write(0)
delay_mu(t_xfer)
data = self.phaser.spi_read()
delay(20*us) # slack
self.core.delay(20.*us) # slack
self.phaser.spi_cfg(select=PHASER_SEL_ATT0 << self.index, div=div,
end=1)
end=True)
self.phaser.spi_write(data)
delay_mu(t_xfer)
return data
@kernel
def trf_write(self, data, readback=False):
def trf_write(self, data: int32, readback: bool = False) -> int32:
"""Write 32 bits to quadrature upconverter register.
:param data: Register data (32 bit) containing encoded address
:param readback: Whether to return the read back MISO data
"""
div = 34 # 50 ns min period
t_xfer = self.phaser.core.seconds_to_mu((8 + 1)*div*4*ns)
t_xfer = self.core.seconds_to_mu((8. + 1.)*float(div)*4.*ns)
read = 0
end = 0
clk_phase = 0
end = False
clk_phase = False
if readback:
clk_phase = 1
clk_phase = True
for i in range(4):
if i == 0 or i == 3:
if i == 3:
end = 1
end = True
self.phaser.spi_cfg(select=PHASER_SEL_TRF0 << self.index,
div=div, lsb_first=1, clk_phase=clk_phase,
div=div, lsb_first=True, clk_phase=clk_phase,
end=end)
self.phaser.spi_write(data)
data >>= 8
@ -994,22 +1026,22 @@ class PhaserChannel:
if readback:
read >>= 8
read |= self.phaser.spi_read() << 24
delay(20*us) # slack
self.core.delay(20.*us) # slack
return read
@kernel
def trf_read(self, addr, cnt_mux_sel=0) -> TInt32:
def trf_read(self, addr: int32, cnt_mux_sel: int32 = 0) -> int32:
"""Quadrature upconverter register read.
:param addr: Register address to read (0 to 7)
:param cnt_mux_sel: Report VCO counter min or max frequency
:return: Register data (32 bit)
"""
self.trf_write(0x80000008 | (addr << 28) | (cnt_mux_sel << 27))
self.trf_write(int32(int64(0x80000008)) | (addr << 28) | (cnt_mux_sel << 27))
# single clk pulse with ~LE to start readback
self.phaser.spi_cfg(select=0, div=34, end=1, length=1)
self.phaser.spi_cfg(select=0, div=34, end=True, length=1)
self.phaser.spi_write(0)
delay((1 + 1)*34*4*ns)
self.core.delay((1. + 1.)*34.*4.*ns)
return self.trf_write(0x00000008 | (cnt_mux_sel << 27),
readback=True)
@ -1022,24 +1054,25 @@ class PhaserChannel:
self.trf_write(self.trf_mmap[1] | (1 << 31))
@kernel
def en_trf_out(self, rf=1, lo=0):
def en_trf_out(self, rf: bool = True, lo: bool = False):
"""Enable the rf/lo outputs of the upconverter (hardware variant).
:param rf: 1 to enable RF output, 0 to disable
:param lo: 1 to enable LO output, 0 to disable
"""
data = self.trf_read(0xc)
delay(0.1 * ms)
self.core.delay(0.1 * ms)
# set RF and LO output bits
data = data | (1 << 12) | (1 << 13) | (1 << 14)
# clear to enable output
if rf == 1:
if rf:
data = data ^ (1 << 14)
if lo == 1:
if lo:
data = data ^ ((1 << 12) | (1 << 13))
self.trf_write(data)
@nac3
class PhaserOscillator:
"""Phaser IQ channel oscillator (NCO/DDS).
@ -1047,15 +1080,19 @@ class PhaserOscillator:
oscillator parameters (amplitude and phase/frequency) are deterministic
(with respect to the 25 MS/s sample clock) but not matched.
"""
kernel_invariants = {"channel", "base_addr"}
core: KernelInvariant[Core]
channel: KernelInvariant[PhaserChannel]
base_addr: KernelInvariant[int32]
def __init__(self, channel, index):
self.core = channel.core
self.channel = channel
self.base_addr = ((self.channel.phaser.channel_base + 1 +
2*self.channel.index) << 8) | index
@kernel
def set_frequency_mu(self, ftw):
def set_frequency_mu(self, ftw: int32):
"""Set Phaser MultiDDS frequency tuning word.
:param ftw: Frequency tuning word (32 bit)
@ -1063,36 +1100,36 @@ class PhaserOscillator:
rtio_output(self.base_addr, ftw)
@kernel
def set_frequency(self, frequency):
def set_frequency(self, frequency: float):
"""Set Phaser MultiDDS frequency.
:param frequency: Frequency in Hz (passband from -10 MHz to 10 MHz,
wrapping around at +- 12.5 MHz)
"""
ftw = int32(round(frequency*((1 << 30)/(6.25*MHz))))
ftw = round(frequency*(float(1 << 30)/(6.25*MHz)))
self.set_frequency_mu(ftw)
@kernel
def set_amplitude_phase_mu(self, asf=0x7fff, pow=0, clr=0):
def set_amplitude_phase_mu(self, asf: int32 = 0x7fff, pow: int32 = 0, clr: bool = False):
"""Set Phaser MultiDDS amplitude, phase offset and accumulator clear.
:param asf: Amplitude (15 bit)
:param pow: Phase offset word (16 bit)
:param clr: Clear the phase accumulator (persistent)
"""
data = (asf & 0x7fff) | ((clr & 1) << 15) | (pow << 16)
data = (asf & 0x7fff) | (int32(clr) << 15) | (pow << 16)
rtio_output(self.base_addr + (1 << 8), data)
@kernel
def set_amplitude_phase(self, amplitude, phase=0., clr=0):
def set_amplitude_phase(self, amplitude: float, phase: float = 0., clr: bool = False):
"""Set Phaser MultiDDS amplitude and phase.
:param amplitude: Amplitude in units of full scale
:param phase: Phase in turns
:param clr: Clear the phase accumulator (persistent)
"""
asf = int32(round(amplitude*0x7fff))
asf = round(amplitude*float(0x7fff))
if asf < 0 or asf > 0x7fff:
raise ValueError("amplitude out of bounds")
pow = int32(round(phase*(1 << 16)))
pow = round(phase*float(1 << 16))
self.set_amplitude_phase_mu(asf, pow, clr)

View File

@ -40,6 +40,10 @@
{
"type": "fastino",
"ports": [7]
},
{
"type": "phaser",
"ports": [8]
}
]
}

View File

@ -10,6 +10,7 @@ from artiq.coredevice.sampler import Sampler
from artiq.coredevice.edge_counter import EdgeCounter
from artiq.coredevice.grabber import Grabber
from artiq.coredevice.fastino import Fastino
from artiq.coredevice.phaser import Phaser
@nac3
@ -25,6 +26,7 @@ class NAC3Devices(EnvExperiment):
ttl0_counter: KernelInvariant[EdgeCounter]
grabber0: KernelInvariant[Grabber]
fastino0: KernelInvariant[Fastino]
# NAC3TODO segfault phaser0: KernelInvariant[Fastino]
def build(self):
self.setattr_device("core")
@ -38,6 +40,7 @@ class NAC3Devices(EnvExperiment):
self.setattr_device("ttl0_counter")
self.setattr_device("grabber0")
self.setattr_device("fastino0")
# NAC3TODO segfault self.setattr_device("phaser0")
@kernel
def run(self):