2
0
mirror of https://github.com/m-labs/artiq.git synced 2024-12-25 03:08:27 +08:00

Merge remote-tracking branch 'harrydrtio/k7-drtio'

This commit is contained in:
Sebastien Bourdeauducq 2021-06-15 10:04:45 +08:00
commit ea0c7b6173
5 changed files with 969 additions and 0 deletions

View File

@ -153,6 +153,8 @@ fn setup_si5324_as_synthesizer() {
let si5324_ref_input = si5324::Input::Ckin2;
#[cfg(soc_platform = "metlino")]
let si5324_ref_input = si5324::Input::Ckin2;
#[cfg(soc_platform = "kc705")]
let si5324_ref_input = si5324::Input::Ckin2;
si5324::setup(&SI5324_SETTINGS, si5324_ref_input).expect("cannot initialize Si5324");
}
@ -165,6 +167,8 @@ pub fn init() {
let si5324_ext_input = si5324::Input::Ckin2;
#[cfg(soc_platform = "metlino")]
let si5324_ext_input = si5324::Input::Ckin2;
#[cfg(soc_platform = "kc705")]
let si5324_ext_input = si5324::Input::Ckin2;
match get_rtio_clock_cfg() {
RtioClock::Internal => setup_si5324_as_synthesizer(),
RtioClock::External => si5324::bypass(si5324_ext_input).expect("cannot bypass Si5324")

View File

@ -0,0 +1,341 @@
from migen import *
from migen.genlib.resetsync import AsyncResetSynchronizer
from misoc.cores.code_8b10b import Encoder, Decoder
from misoc.interconnect.csr import *
from artiq.gateware.drtio.core import TransceiverInterface, ChannelInterface
from artiq.gateware.drtio.transceiver.clock_aligner import BruteforceClockAligner
from artiq.gateware.drtio.transceiver.gtx_7series_init import *
class GTX_20X(Module):
# Settings:
# * GTX reference clock @ 125MHz == coarse RTIO frequency
# * GTX data width = 20
# * GTX PLL frequency @ 2.5GHz
# * GTX line rate (TX & RX) @ 2.5Gb/s
# * GTX TX/RX USRCLK @ 125MHz == coarse RTIO frequency
def __init__(self, refclk, tx_pads, rx_pads, sys_clk_freq, rtio_clk_freq=125e6, tx_mode="single", rx_mode="single"):
assert tx_mode in ["single", "master", "slave"]
assert rx_mode in ["single", "master", "slave"]
self.txenable = Signal()
self.submodules.encoder = ClockDomainsRenamer("rtio_tx")(
Encoder(2, True))
self.submodules.decoders = [ClockDomainsRenamer("rtio_rx")(
(Decoder(True))) for _ in range(2)]
self.rx_ready = Signal()
# transceiver direct clock outputs
# useful to specify clock constraints in a way palatable to Vivado
self.txoutclk = Signal()
self.rxoutclk = Signal()
# # #
cpllreset = Signal()
cplllock = Signal()
# TX generates RTIO clock, init must be in system domain
self.submodules.tx_init = tx_init = GTXInit(sys_clk_freq, False, mode=tx_mode)
# RX receives restart commands from RTIO domain
self.submodules.rx_init = rx_init = ClockDomainsRenamer("rtio_tx")(
GTXInit(rtio_clk_freq, True, mode=rx_mode))
self.comb += [
cpllreset.eq(tx_init.cpllreset),
tx_init.cplllock.eq(cplllock),
rx_init.cplllock.eq(cplllock)
]
txdata = Signal(20)
rxdata = Signal(20)
# Note: the following parameters were set after consulting AR45360
self.specials += \
Instance("GTXE2_CHANNEL",
# PMA Attributes
p_PMA_RSV=0x00018480,
p_PMA_RSV2=0x2050, # PMA_RSV2[5] = 0: Eye scan feature disabled
p_PMA_RSV3=0,
p_PMA_RSV4=1, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
p_RX_BIAS_CFG=0b000000000100,
p_RX_OS_CFG=0b0000010000000,
p_RX_CLK25_DIV=5,
p_TX_CLK25_DIV=5,
# Power-Down Attributes
p_PD_TRANS_TIME_FROM_P2=0x3c,
p_PD_TRANS_TIME_NONE_P2=0x3c,
p_PD_TRANS_TIME_TO_P2=0x64,
# CPLL
p_CPLL_CFG=0xBC07DC,
p_CPLL_FBDIV=4,
p_CPLL_FBDIV_45=5,
p_CPLL_REFCLK_DIV=1,
p_RXOUT_DIV=2,
p_TXOUT_DIV=2,
i_CPLLRESET=cpllreset,
i_CPLLPD=cpllreset,
o_CPLLLOCK=cplllock,
i_CPLLLOCKEN=1,
i_CPLLREFCLKSEL=0b001,
i_TSTIN=2**20-1,
i_GTREFCLK0=refclk,
# TX clock
p_TXBUF_EN="FALSE",
p_TX_XCLK_SEL="TXUSR",
o_TXOUTCLK=self.txoutclk,
i_TXSYSCLKSEL=0b00,
i_TXOUTCLKSEL=0b11,
# TX Startup/Reset
i_TXPHDLYRESET=0,
i_TXDLYBYPASS=0,
i_TXPHALIGNEN=1 if tx_mode != "single" else 0,
i_GTTXRESET=tx_init.gtXxreset,
o_TXRESETDONE=tx_init.Xxresetdone,
i_TXDLYSRESET=tx_init.Xxdlysreset,
o_TXDLYSRESETDONE=tx_init.Xxdlysresetdone,
i_TXPHINIT=tx_init.txphinit if tx_mode != "single" else 0,
o_TXPHINITDONE=tx_init.txphinitdone if tx_mode != "single" else Signal(),
i_TXPHALIGN=tx_init.Xxphalign if tx_mode != "single" else 0,
i_TXDLYEN=tx_init.Xxdlyen if tx_mode != "single" else 0,
o_TXPHALIGNDONE=tx_init.Xxphaligndone,
i_TXUSERRDY=tx_init.Xxuserrdy,
p_TXPMARESET_TIME=1,
p_TXPCSRESET_TIME=1,
i_TXINHIBIT=~self.txenable,
# TX data
p_TX_DATA_WIDTH=20,
p_TX_INT_DATAWIDTH=0,
i_TXCHARDISPMODE=Cat(txdata[9], txdata[19]),
i_TXCHARDISPVAL=Cat(txdata[8], txdata[18]),
i_TXDATA=Cat(txdata[:8], txdata[10:18]),
i_TXUSRCLK=ClockSignal("rtio_tx"),
i_TXUSRCLK2=ClockSignal("rtio_tx"),
# TX electrical
i_TXBUFDIFFCTRL=0b100,
i_TXDIFFCTRL=0b1000,
# RX Startup/Reset
i_RXPHDLYRESET=0,
i_RXDLYBYPASS=0,
i_RXPHALIGNEN=1 if rx_mode != "single" else 0,
i_GTRXRESET=rx_init.gtXxreset,
o_RXRESETDONE=rx_init.Xxresetdone,
i_RXDLYSRESET=rx_init.Xxdlysreset,
o_RXDLYSRESETDONE=rx_init.Xxdlysresetdone,
i_RXPHALIGN=rx_init.Xxphalign if rx_mode != "single" else 0,
i_RXDLYEN=rx_init.Xxdlyen if rx_mode != "single" else 0,
o_RXPHALIGNDONE=rx_init.Xxphaligndone,
i_RXUSERRDY=rx_init.Xxuserrdy,
p_RXPMARESET_TIME=1,
p_RXPCSRESET_TIME=1,
# RX AFE
p_RX_DFE_XYD_CFG=0,
p_RX_CM_SEL=0b11, # RX_CM_SEL = 0b11: Common mode is programmable
p_RX_CM_TRIM=0b010, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
i_RXDFEXYDEN=1,
i_RXDFEXYDHOLD=0,
i_RXDFEXYDOVRDEN=0,
i_RXLPMEN=0, # RXLPMEN = 0: DFE mode is enabled
p_RX_DFE_GAIN_CFG=0x0207EA,
p_RX_DFE_VP_CFG=0b00011111100000011,
p_RX_DFE_UT_CFG=0b10001000000000000,
p_RX_DFE_KL_CFG=0b0000011111110,
p_RX_DFE_KL_CFG2=0x3788140A,
p_RX_DFE_H2_CFG=0b000110000000,
p_RX_DFE_H3_CFG=0b000110000000,
p_RX_DFE_H4_CFG=0b00011100000,
p_RX_DFE_H5_CFG=0b00011100000,
p_RX_DFE_LPM_CFG=0x0904, # RX_DFE_LPM_CFG = 0x0904: linerate <= 6.6Gb/s
# = 0x0104: linerate > 6.6Gb/s
# RX clock
i_RXDDIEN=1,
i_RXSYSCLKSEL=0b00,
i_RXOUTCLKSEL=0b010,
o_RXOUTCLK=self.rxoutclk,
i_RXUSRCLK=ClockSignal("rtio_rx"),
i_RXUSRCLK2=ClockSignal("rtio_rx"),
# RX Clock Correction Attributes
p_CLK_CORRECT_USE="FALSE",
p_CLK_COR_SEQ_1_1=0b0100000000,
p_CLK_COR_SEQ_2_1=0b0100000000,
p_CLK_COR_SEQ_1_ENABLE=0b1111,
p_CLK_COR_SEQ_2_ENABLE=0b1111,
# RX data
p_RX_DATA_WIDTH=20,
p_RX_INT_DATAWIDTH=0,
o_RXDISPERR=Cat(rxdata[9], rxdata[19]),
o_RXCHARISK=Cat(rxdata[8], rxdata[18]),
o_RXDATA=Cat(rxdata[:8], rxdata[10:18]),
# RX Byte and Word Alignment Attributes
p_ALIGN_COMMA_DOUBLE="FALSE",
p_ALIGN_COMMA_ENABLE=0b1111111111,
p_ALIGN_COMMA_WORD=1,
p_ALIGN_MCOMMA_DET="TRUE",
p_ALIGN_MCOMMA_VALUE=0b1010000011,
p_ALIGN_PCOMMA_DET="TRUE",
p_ALIGN_PCOMMA_VALUE=0b0101111100,
p_SHOW_REALIGN_COMMA="FALSE",
p_RXSLIDE_AUTO_WAIT=7,
p_RXSLIDE_MODE="PCS",
p_RX_SIG_VALID_DLY=10,
# RX 8B/10B Decoder Attributes
p_RX_DISPERR_SEQ_MATCH="FALSE",
p_DEC_MCOMMA_DETECT="TRUE",
p_DEC_PCOMMA_DETECT="TRUE",
p_DEC_VALID_COMMA_ONLY="FALSE",
# RX Buffer Attributes
p_RXBUF_ADDR_MODE="FAST",
p_RXBUF_EIDLE_HI_CNT=0b1000,
p_RXBUF_EIDLE_LO_CNT=0b0000,
p_RXBUF_EN="FALSE",
p_RX_BUFFER_CFG=0b000000,
p_RXBUF_RESET_ON_CB_CHANGE="TRUE",
p_RXBUF_RESET_ON_COMMAALIGN="FALSE",
p_RXBUF_RESET_ON_EIDLE="FALSE", # RXBUF_RESET_ON_EIDLE = FALSE: OOB is disabled
p_RXBUF_RESET_ON_RATE_CHANGE="TRUE",
p_RXBUFRESET_TIME=0b00001,
p_RXBUF_THRESH_OVFLW=61,
p_RXBUF_THRESH_OVRD="FALSE",
p_RXBUF_THRESH_UNDFLW=4,
p_RXDLY_CFG=0x001F,
p_RXDLY_LCFG=0x030,
p_RXDLY_TAP_CFG=0x0000,
p_RXPH_CFG=0xC00002,
p_RXPHDLY_CFG=0x084020,
p_RXPH_MONITOR_SEL=0b00000,
p_RX_XCLK_SEL="RXUSR",
p_RX_DDI_SEL=0b000000,
p_RX_DEFER_RESET_BUF_EN="TRUE",
# CDR Attributes
p_RXCDR_CFG=0x03000023FF20400020, # DFE @ <= 6.6Gb/s, scrambled, CDR setting < +/- 200ppm
# (See UG476 (v1.12.1), p.206)
p_RXCDR_FR_RESET_ON_EIDLE=0b0,
p_RXCDR_HOLD_DURING_EIDLE=0b0,
p_RXCDR_PH_RESET_ON_EIDLE=0b0,
p_RXCDR_LOCK_CFG=0b010101,
# Pads
i_GTXRXP=rx_pads.p,
i_GTXRXN=rx_pads.n,
o_GTXTXP=tx_pads.p,
o_GTXTXN=tx_pads.n,
# Other parameters
p_PCS_RSVD_ATTR=(
(tx_mode != "single") << 1 | # PCS_RSVD_ATTR[1] = 0: TX Single Lane Auto Mode
# = 1: TX Manual Mode
(rx_mode != "single") << 2 | # [2] = 0: RX Single Lane Auto Mode
# = 1: RX Manual Mode
0 << 8 # [8] = 0: OOB is disabled
),
i_RXELECIDLEMODE=0b11, # RXELECIDLEMODE = 0b11: OOB is disabled
p_RX_DFE_LPM_HOLD_DURING_EIDLE=0b0,
p_ES_EYE_SCAN_EN="TRUE", # Must be TRUE for GTX
)
# TX clocking
tx_reset_deglitched = Signal()
tx_reset_deglitched.attr.add("no_retiming")
self.sync += tx_reset_deglitched.eq(~tx_init.done)
self.clock_domains.cd_rtio_tx = ClockDomain()
if tx_mode == "single" or tx_mode == "master":
self.specials += Instance("BUFG", i_I=self.txoutclk, o_O=self.cd_rtio_tx.clk)
self.specials += AsyncResetSynchronizer(self.cd_rtio_tx, tx_reset_deglitched)
# RX clocking
rx_reset_deglitched = Signal()
rx_reset_deglitched.attr.add("no_retiming")
self.sync.rtio += rx_reset_deglitched.eq(~rx_init.done)
self.clock_domains.cd_rtio_rx = ClockDomain()
if rx_mode == "single" or rx_mode == "master":
self.specials += Instance("BUFG", i_I=self.rxoutclk, o_O=self.cd_rtio_rx.clk),
self.specials += AsyncResetSynchronizer(self.cd_rtio_rx, rx_reset_deglitched)
self.comb += [
txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1])),
self.decoders[0].input.eq(rxdata[:10]),
self.decoders[1].input.eq(rxdata[10:])
]
clock_aligner = BruteforceClockAligner(0b0101111100, rtio_clk_freq)
self.submodules += clock_aligner
self.comb += [
clock_aligner.rxdata.eq(rxdata),
rx_init.restart.eq(clock_aligner.restart),
self.rx_ready.eq(clock_aligner.ready)
]
class GTX(Module, TransceiverInterface):
def __init__(self, clock_pads, tx_pads, rx_pads, sys_clk_freq, rtio_clk_freq=125e6, master=0):
assert len(tx_pads) == len(rx_pads)
self.nchannels = nchannels = len(tx_pads)
self.gtxs = []
self.rtio_clk_freq = rtio_clk_freq
# # #
refclk = Signal()
stable_clkin_n = Signal()
self.specials += Instance("IBUFDS_GTE2",
i_CEB=stable_clkin_n,
i_I=clock_pads.p,
i_IB=clock_pads.n,
o_O=refclk
)
rtio_tx_clk = Signal()
channel_interfaces = []
for i in range(nchannels):
if nchannels == 1:
mode = "single"
else:
mode = "master" if i == master else "slave"
# Note: RX phase alignment is to be done on individual lanes, not multi-lane.
gtx = GTX_20X(refclk, tx_pads[i], rx_pads[i], sys_clk_freq, rtio_clk_freq=rtio_clk_freq, tx_mode=mode, rx_mode="single")
# Fan-out (to slave) / Fan-in (from master) of the TXUSRCLK
if mode == "slave":
self.comb += gtx.cd_rtio_tx.clk.eq(rtio_tx_clk)
else:
self.comb += rtio_tx_clk.eq(gtx.cd_rtio_tx.clk)
self.gtxs.append(gtx)
setattr(self.submodules, "gtx"+str(i), gtx)
channel_interface = ChannelInterface(gtx.encoder, gtx.decoders)
self.comb += channel_interface.rx_ready.eq(gtx.rx_ready)
channel_interfaces.append(channel_interface)
self.submodules.tx_phase_alignment = GTXInitPhaseAlignment([gtx.tx_init for gtx in self.gtxs])
TransceiverInterface.__init__(self, channel_interfaces)
for n, gtx in enumerate(self.gtxs):
self.comb += [
stable_clkin_n.eq(~self.stable_clkin.storage),
gtx.txenable.eq(self.txenable.storage[n])
]
# Connect master's `rtio_tx` clock to `rtio` clock
self.comb += [
self.cd_rtio.clk.eq(self.gtxs[master].cd_rtio_tx.clk),
self.cd_rtio.rst.eq(reduce(or_, [gtx.cd_rtio_tx.rst for gtx in self.gtxs]))
]
# Connect slave i's `rtio_rx` clock to `rtio_rxi` clock
for i in range(nchannels):
self.comb += [
getattr(self, "cd_rtio_rx" + str(i)).clk.eq(self.gtxs[i].cd_rtio_rx.clk),
getattr(self, "cd_rtio_rx" + str(i)).rst.eq(self.gtxs[i].cd_rtio_rx.rst)
]

View File

@ -0,0 +1,250 @@
from math import ceil
from migen import *
from migen.genlib.cdc import MultiReg
from migen.genlib.misc import WaitTimer
from migen.genlib.fsm import FSM
class GTXInit(Module):
# Based on LiteSATA by Enjoy-Digital
# Choose between Auto Mode and Manual Mode for TX/RX phase alignment with buffer bypassed:
# * Auto Mode: When only single lane is involved, as suggested by Xilinx (AR59612)
# * Manual Mode: When only multi-lane is involved, as suggested by Xilinx (AR59612)
def __init__(self, sys_clk_freq, rx, mode="single"):
assert isinstance(rx, bool)
assert mode in ["single", "master", "slave"]
self.mode = mode
self.done = Signal()
self.restart = Signal()
# GTX signals
self.cplllock = Signal()
self.cpllreset = Signal()
self.gtXxreset = Signal()
self.Xxresetdone = Signal()
self.Xxdlysreset = Signal()
self.Xxdlysresetdone = Signal()
self.Xxphaligndone = Signal()
self.Xxuserrdy = Signal()
# GTX signals exclusive to multi-lane
if mode != "single":
self.Xxphalign = Signal()
self.Xxdlyen = Signal()
# TX only:
if not rx:
self.txphinit = Signal()
self.txphinitdone = Signal()
# Strobe from master channel to initialize TX/RX phase alignment on slaves
self.master_phaligndone = Signal()
# Strobe from slave channels to re-enable TX/RX delay alignment on master;
# To be combinatorially AND-ed from all slave's `done`
if mode == "master":
self.slaves_phaligndone = Signal()
# # #
# Double-latch transceiver asynch outputs
cplllock = Signal()
Xxresetdone = Signal()
Xxdlysresetdone = Signal()
Xxphaligndone = Signal()
self.specials += [
MultiReg(self.cplllock, cplllock),
MultiReg(self.Xxresetdone, Xxresetdone),
MultiReg(self.Xxdlysresetdone, Xxdlysresetdone),
MultiReg(self.Xxphaligndone, Xxphaligndone),
]
if mode != "single":
txphinitdone = Signal()
self.specials += MultiReg(self.txphinitdone, txphinitdone)
# Deglitch FSM outputs driving transceiver asynch inputs
gtXxreset = Signal()
Xxdlysreset = Signal()
Xxuserrdy = Signal()
self.sync += [
self.gtXxreset.eq(gtXxreset),
self.Xxdlysreset.eq(Xxdlysreset),
self.Xxuserrdy.eq(Xxuserrdy)
]
if mode != "single":
Xxphalign = Signal()
Xxdlyen = Signal()
self.sync += [
self.Xxphalign.eq(Xxphalign),
self.Xxdlyen.eq(Xxdlyen)
]
if not rx:
txphinit = Signal()
self.sync += self.txphinit.eq(txphinit)
# After configuration, transceiver resets have to stay low for
# at least 500ns (see AR43482)
startup_cycles = ceil(500*sys_clk_freq/1000000000)
startup_timer = WaitTimer(startup_cycles)
self.submodules += startup_timer
# PLL reset should be 1 period of refclk
# (i.e. 1/(125MHz) for the case of RTIO @ 125MHz)
pll_reset_cycles = ceil(sys_clk_freq/125e6)
pll_reset_timer = WaitTimer(pll_reset_cycles)
self.submodules += pll_reset_timer
startup_fsm = FSM(reset_state="INITIAL")
self.submodules += startup_fsm
if rx:
cdr_stable_timer = WaitTimer(1024)
self.submodules += cdr_stable_timer
# Rising edge detection for phase alignment "done"
Xxphaligndone_r = Signal(reset=1)
Xxphaligndone_rising = Signal()
self.sync += Xxphaligndone_r.eq(Xxphaligndone)
self.comb += Xxphaligndone_rising.eq(Xxphaligndone & ~Xxphaligndone_r)
startup_fsm.act("INITIAL",
startup_timer.wait.eq(1),
If(startup_timer.done, NextState("RESET_ALL"))
)
startup_fsm.act("RESET_ALL",
gtXxreset.eq(1),
self.cpllreset.eq(1),
pll_reset_timer.wait.eq(1),
If(pll_reset_timer.done, NextState("RELEASE_PLL_RESET"))
)
startup_fsm.act("RELEASE_PLL_RESET",
gtXxreset.eq(1),
If(cplllock, NextState("RELEASE_GTH_RESET"))
)
# Release GTX reset and wait for GTX resetdone
# (from UG476, GTX is reset on falling edge
# of gttxreset)
if rx:
startup_fsm.act("RELEASE_GTH_RESET",
Xxuserrdy.eq(1),
cdr_stable_timer.wait.eq(1),
If(Xxresetdone & cdr_stable_timer.done, NextState("DELAY_ALIGN"))
)
else:
startup_fsm.act("RELEASE_GTH_RESET",
Xxuserrdy.eq(1),
If(Xxresetdone, NextState("DELAY_ALIGN"))
)
# States exclusive to Auto Mode:
if mode == "single":
# Start delay alignment (pulse)
startup_fsm.act("DELAY_ALIGN",
Xxuserrdy.eq(1),
Xxdlysreset.eq(1),
NextState("WAIT_DELAY_ALIGN")
)
# Wait for delay alignment
startup_fsm.act("WAIT_DELAY_ALIGN",
Xxuserrdy.eq(1),
If(Xxdlysresetdone, NextState("WAIT_FIRST_PHASE_ALIGN_DONE"))
)
# Wait 2 rising edges of rxphaligndone
# (from UG476 in buffer bypass config)
startup_fsm.act("WAIT_FIRST_PHASE_ALIGN_DONE",
Xxuserrdy.eq(1),
If(Xxphaligndone_rising, NextState("WAIT_SECOND_PHASE_ALIGN_DONE"))
)
startup_fsm.act("WAIT_SECOND_PHASE_ALIGN_DONE",
Xxuserrdy.eq(1),
If(Xxphaligndone_rising, NextState("READY"))
)
# States exclusive to Manual Mode:
else:
# Start delay alignment (hold)
startup_fsm.act("DELAY_ALIGN",
Xxuserrdy.eq(1),
Xxdlysreset.eq(1),
If(Xxdlysresetdone,
# TX master: proceed to initialize phase alignment manually
(NextState("PHASE_ALIGN_INIT") if not rx else
# RX master: proceed to start phase alignment manually
NextState("PHASE_ALIGN")) if mode == "master" else
# TX/RX slave: wait for phase alignment "done" on master
NextState("WAIT_MASTER")
)
)
if mode == "slave":
# TX slave: Wait for phase alignment "done" on master
startup_fsm.act("WAIT_MASTER",
Xxuserrdy.eq(1),
If(self.master_phaligndone,
# TX slave: proceed to initialize phase alignment manually
NextState("PHASE_ALIGN_INIT") if not rx else
# RX slave: proceed to start phase alignment manually
NextState("PHASE_ALIGN")
)
)
if not rx:
# TX master/slave: Initialize phase alignment, wait rising edge on "done"
startup_fsm.act("PHASE_ALIGN_INIT",
Xxuserrdy.eq(1),
txphinit.eq(1),
If(txphinitdone, NextState("PHASE_ALIGN"))
)
# Do phase ealignment, wait rising edge on "done"
startup_fsm.act("PHASE_ALIGN",
Xxuserrdy.eq(1),
Xxphalign.eq(1),
If(Xxphaligndone_rising,
# TX/RX master: proceed to set T/RXDLYEN
NextState("FIRST_DLYEN") if mode == "master" else
# TX/RX slave: proceed to signal master
NextState("READY")
)
)
if mode == "master":
# Enable delay alignment in manual mode, wait rising edge on phase alignment "done"
startup_fsm.act("FIRST_DLYEN",
Xxuserrdy.eq(1),
Xxdlyen.eq(1),
If(Xxphaligndone_rising, NextState("WAIT_SLAVES"))
)
# Wait for phase alignment "done" on all slaves
startup_fsm.act("WAIT_SLAVES",
Xxuserrdy.eq(1),
self.master_phaligndone.eq(1),
If(self.slaves_phaligndone, NextState("SECOND_DLYEN"))
)
# Re-enable delay alignment in manual mode, wait rising edge on phase alignment "done"
startup_fsm.act("SECOND_DLYEN",
Xxuserrdy.eq(1),
Xxdlyen.eq(1),
If(Xxphaligndone_rising, NextState("READY"))
)
# Transceiver is ready, alignment can be restarted
startup_fsm.act("READY",
Xxuserrdy.eq(1),
self.done.eq(1),
If(self.restart, NextState("RESET_ALL"))
)
class GTXInitPhaseAlignment(Module):
# Interconnect of phase alignment "done" signals for Manual Mode multi-lane
def __init__(self, gtx_inits):
master_phaligndone = Signal() # Fan-out to `slave.master_phaligndone`s
slaves_phaligndone = Signal(reset=1) # ANDed from `slave.done`s
# Slave channels
for gtx_init in gtx_inits:
if gtx_init.mode == "slave":
self.comb += gtx_init.master_phaligndone.eq(master_phaligndone)
slaves_phaligndone = slaves_phaligndone & gtx_init.done
# Master channels
for gtx_init in gtx_inits:
if gtx_init.mode == "master":
self.comb += [
master_phaligndone.eq(gtx_init.master_phaligndone),
gtx_init.slaves_phaligndone.eq(slaves_phaligndone)
]

View File

@ -0,0 +1,180 @@
#!/usr/bin/env python3
import argparse
from migen import *
from migen.build.generic_platform import *
from migen.build.xilinx.vivado import XilinxVivadoToolchain
from migen.build.xilinx.ise import XilinxISEToolchain
from misoc.cores import spi as spi_csr
from misoc.cores import gpio
from misoc.integration.builder import *
from misoc.targets.kc705 import MiniSoC, soc_kc705_args, soc_kc705_argdict
from artiq.gateware.amp import AMPSoC
from artiq.gateware import rtio
from artiq.gateware.rtio.phy import ttl_simple
from artiq.gateware.drtio.transceiver import gtx_7series
from artiq.gateware.drtio import *
from artiq.build_soc import *
class Master(MiniSoC, AMPSoC):
mem_map = {
"cri_con": 0x10000000,
"rtio": 0x20000000,
"rtio_dma": 0x30000000,
"drtioaux": 0x50000000,
"mailbox": 0x70000000
}
mem_map.update(MiniSoC.mem_map)
def __init__(self, gateware_identifier_str=None, **kwargs):
MiniSoC.__init__(self,
cpu_type="or1k",
sdram_controller_type="minicon",
l2_size=128*1024,
integrated_sram_size=8192,
ethmac_nrxslots=4,
ethmac_ntxslots=4,
**kwargs)
AMPSoC.__init__(self)
add_identifier(self, gateware_identifier_str=gateware_identifier_str)
if isinstance(self.platform.toolchain, XilinxVivadoToolchain):
self.platform.toolchain.bitstream_commands.extend([
"set_property BITSTREAM.GENERAL.COMPRESS True [current_design]",
])
if isinstance(self.platform.toolchain, XilinxISEToolchain):
self.platform.toolchain.bitgen_opt += " -g compress"
platform = self.platform
self.comb += platform.request("sfp_tx_disable_n").eq(1)
tx_pads = [
platform.request("sfp_tx"), platform.request("user_sma_mgt_tx")
]
rx_pads = [
platform.request("sfp_rx"), platform.request("user_sma_mgt_rx")
]
# 1000BASE_BX10 Ethernet compatible, 125MHz RTIO clock
self.submodules.drtio_transceiver = gtx_7series.GTX(
clock_pads=platform.request("si5324_clkout"),
tx_pads=tx_pads,
rx_pads=rx_pads,
sys_clk_freq=self.clk_freq)
self.csr_devices.append("drtio_transceiver")
self.submodules.rtio_tsc = rtio.TSC("async", glbl_fine_ts_width=3)
drtio_csr_group = []
drtioaux_csr_group = []
drtioaux_memory_group = []
drtio_cri = []
for i in range(len(self.drtio_transceiver.channels)):
core_name = "drtio" + str(i)
coreaux_name = "drtioaux" + str(i)
memory_name = "drtioaux" + str(i) + "_mem"
drtio_csr_group.append(core_name)
drtioaux_csr_group.append(coreaux_name)
drtioaux_memory_group.append(memory_name)
cdr = ClockDomainsRenamer({"rtio_rx": "rtio_rx" + str(i)})
core = cdr(DRTIOMaster(
self.rtio_tsc, self.drtio_transceiver.channels[i]))
setattr(self.submodules, core_name, core)
drtio_cri.append(core.cri)
self.csr_devices.append(core_name)
coreaux = cdr(DRTIOAuxController(core.link_layer))
setattr(self.submodules, coreaux_name, coreaux)
self.csr_devices.append(coreaux_name)
memory_address = self.mem_map["drtioaux"] + 0x800*i
self.add_wb_slave(memory_address, 0x800,
coreaux.bus)
self.add_memory_region(memory_name, memory_address | self.shadow_base, 0x800)
self.config["HAS_DRTIO"] = None
self.config["HAS_DRTIO_ROUTING"] = None
self.add_csr_group("drtio", drtio_csr_group)
self.add_csr_group("drtioaux", drtioaux_csr_group)
self.add_memory_group("drtioaux_mem", drtioaux_memory_group)
self.config["RTIO_FREQUENCY"] = str(self.drtio_transceiver.rtio_clk_freq/1e6)
self.submodules.si5324_rst_n = gpio.GPIOOut(platform.request("si5324").rst_n)
self.csr_devices.append("si5324_rst_n")
i2c = self.platform.request("i2c")
self.submodules.i2c = gpio.GPIOTristate([i2c.scl, i2c.sda])
self.csr_devices.append("i2c")
self.config["I2C_BUS_COUNT"] = 1
self.config["HAS_SI5324"] = None
self.config["SI5324_AS_SYNTHESIZER"] = None
self.comb += [
platform.request("user_sma_clock_p").eq(ClockSignal("rtio_rx0")),
platform.request("user_sma_clock_n").eq(ClockSignal("rtio"))
]
rtio_clk_period = 1e9/self.drtio_transceiver.rtio_clk_freq
# Constrain TX & RX timing for the first transceiver channel
# (First channel acts as master for phase alignment for all channels' TX)
gtx0 = self.drtio_transceiver.gtxs[0]
platform.add_period_constraint(gtx0.txoutclk, rtio_clk_period)
platform.add_period_constraint(gtx0.rxoutclk, rtio_clk_period)
platform.add_false_path_constraints(
self.crg.cd_sys.clk,
gtx0.txoutclk, gtx0.rxoutclk)
# Constrain RX timing for the each transceiver channel
# (Each channel performs single-lane phase alignment for RX)
for gtx in self.drtio_transceiver.gtxs[1:]:
platform.add_period_constraint(gtx.rxoutclk, rtio_clk_period)
platform.add_false_path_constraints(
self.crg.cd_sys.clk, gtx0.txoutclk, gtx.rxoutclk)
rtio_channels = []
for i in range(8):
phy = ttl_simple.Output(platform.request("user_led", i))
self.submodules += phy
rtio_channels.append(rtio.Channel.from_phy(phy))
for sma in "user_sma_gpio_p", "user_sma_gpio_n":
phy = ttl_simple.InOut(platform.request(sma))
self.submodules += phy
rtio_channels.append(rtio.Channel.from_phy(phy))
self.submodules.rtio_moninj = rtio.MonInj(rtio_channels)
self.csr_devices.append("rtio_moninj")
self.submodules.rtio_core = rtio.Core(self.rtio_tsc, rtio_channels)
self.csr_devices.append("rtio_core")
self.submodules.rtio = rtio.KernelInitiator(self.rtio_tsc)
self.submodules.rtio_dma = ClockDomainsRenamer("sys_kernel")(
rtio.DMA(self.get_native_sdram_if()))
self.register_kernel_cpu_csrdevice("rtio")
self.register_kernel_cpu_csrdevice("rtio_dma")
self.submodules.cri_con = rtio.CRIInterconnectShared(
[self.rtio.cri, self.rtio_dma.cri],
[self.rtio_core.cri] + drtio_cri,
enable_routing=True)
self.register_kernel_cpu_csrdevice("cri_con")
self.submodules.routing_table = rtio.RoutingTableAccess(self.cri_con)
self.csr_devices.append("routing_table")
def main():
parser = argparse.ArgumentParser(
description="ARTIQ device binary builder / KC705 DRTIO master")
builder_args(parser)
soc_kc705_args(parser)
parser.set_defaults(output_dir="artiq_kc705/master")
args = parser.parse_args()
soc = Master(**soc_kc705_argdict(args))
build_artiq_soc(soc, builder_argdict(args))
if __name__ == "__main__":
main()

View File

@ -0,0 +1,194 @@
#!/usr/bin/env python3
import argparse
from migen import *
from migen.build.generic_platform import *
from migen.build.xilinx.vivado import XilinxVivadoToolchain
from migen.build.xilinx.ise import XilinxISEToolchain
from misoc.cores import spi as spi_csr
from misoc.cores import gpio
from misoc.integration.builder import *
from misoc.targets.kc705 import BaseSoC, soc_kc705_args, soc_kc705_argdict
from artiq.gateware import rtio
from artiq.gateware.rtio.phy import ttl_simple
from artiq.gateware.drtio.transceiver import gtx_7series
from artiq.gateware.drtio.siphaser import SiPhaser7Series
from artiq.gateware.drtio.rx_synchronizer import XilinxRXSynchronizer
from artiq.gateware.drtio import *
from artiq.build_soc import *
class Satellite(BaseSoC):
mem_map = {
"drtioaux": 0x50000000,
}
mem_map.update(BaseSoC.mem_map)
def __init__(self, gateware_identifier_str=None, sma_as_sat=False, **kwargs):
BaseSoC.__init__(self,
cpu_type="or1k",
sdram_controller_type="minicon",
l2_size=128*1024,
integrated_sram_size=8192,
**kwargs)
add_identifier(self, gateware_identifier_str=gateware_identifier_str)
if isinstance(self.platform.toolchain, XilinxVivadoToolchain):
self.platform.toolchain.bitstream_commands.extend([
"set_property BITSTREAM.GENERAL.COMPRESS True [current_design]",
])
if isinstance(self.platform.toolchain, XilinxISEToolchain):
self.platform.toolchain.bitgen_opt += " -g compress"
platform = self.platform
self.comb += platform.request("sfp_tx_disable_n").eq(1)
tx_pads = [
platform.request("sfp_tx"), platform.request("user_sma_mgt_tx")
]
rx_pads = [
platform.request("sfp_rx"), platform.request("user_sma_mgt_rx")
]
if sma_as_sat:
tx_pads = tx_pads[::-1]
rx_pads = rx_pads[::-1]
# 1000BASE_BX10 Ethernet compatible, 125MHz RTIO clock
self.submodules.drtio_transceiver = gtx_7series.GTX(
clock_pads=platform.request("si5324_clkout"),
tx_pads=tx_pads,
rx_pads=rx_pads,
sys_clk_freq=self.clk_freq)
self.csr_devices.append("drtio_transceiver")
self.submodules.rtio_tsc = rtio.TSC("sync", glbl_fine_ts_width=3)
drtioaux_csr_group = []
drtioaux_memory_group = []
drtiorep_csr_group = []
self.drtio_cri = []
for i in range(len(self.drtio_transceiver.channels)):
coreaux_name = "drtioaux" + str(i)
memory_name = "drtioaux" + str(i) + "_mem"
drtioaux_csr_group.append(coreaux_name)
drtioaux_memory_group.append(memory_name)
cdr = ClockDomainsRenamer({"rtio_rx": "rtio_rx" + str(i)})
# Satellite
if i == 0:
self.submodules.rx_synchronizer = cdr(XilinxRXSynchronizer())
core = cdr(DRTIOSatellite(
self.rtio_tsc, self.drtio_transceiver.channels[0], self.rx_synchronizer))
self.submodules.drtiosat = core
self.csr_devices.append("drtiosat")
# Repeaters
else:
corerep_name = "drtiorep" + str(i-1)
drtiorep_csr_group.append(corerep_name)
core = cdr(DRTIORepeater(
self.rtio_tsc, self.drtio_transceiver.channels[i]))
setattr(self.submodules, corerep_name, core)
self.drtio_cri.append(core.cri)
self.csr_devices.append(corerep_name)
coreaux = cdr(DRTIOAuxController(core.link_layer))
setattr(self.submodules, coreaux_name, coreaux)
self.csr_devices.append(coreaux_name)
memory_address = self.mem_map["drtioaux"] + 0x800*i
self.add_wb_slave(memory_address, 0x800,
coreaux.bus)
self.add_memory_region(memory_name, memory_address | self.shadow_base, 0x800)
self.config["HAS_DRTIO"] = None
self.config["HAS_DRTIO_ROUTING"] = None
self.add_csr_group("drtioaux", drtioaux_csr_group)
self.add_memory_group("drtioaux_mem", drtioaux_memory_group)
self.add_csr_group("drtiorep", drtiorep_csr_group)
self.config["RTIO_FREQUENCY"] = str(self.drtio_transceiver.rtio_clk_freq/1e6)
# Si5324 Phaser
self.submodules.siphaser = SiPhaser7Series(
si5324_clkin=platform.request("si5324_clkin"),
rx_synchronizer=self.rx_synchronizer,
ultrascale=False,
rtio_clk_freq=self.drtio_transceiver.rtio_clk_freq)
platform.add_false_path_constraints(
self.crg.cd_sys.clk, self.siphaser.mmcm_freerun_output)
self.csr_devices.append("siphaser")
self.submodules.si5324_rst_n = gpio.GPIOOut(platform.request("si5324").rst_n)
self.csr_devices.append("si5324_rst_n")
i2c = self.platform.request("i2c")
self.submodules.i2c = gpio.GPIOTristate([i2c.scl, i2c.sda])
self.csr_devices.append("i2c")
self.config["I2C_BUS_COUNT"] = 1
self.config["HAS_SI5324"] = None
self.comb += [
platform.request("user_sma_clock_p").eq(ClockSignal("rtio_rx0")),
platform.request("user_sma_clock_n").eq(ClockSignal("rtio"))
]
rtio_clk_period = 1e9/self.drtio_transceiver.rtio_clk_freq
# Constrain TX & RX timing for the first transceiver channel
# (First channel acts as master for phase alignment for all channels' TX)
gtx0 = self.drtio_transceiver.gtxs[0]
platform.add_period_constraint(gtx0.txoutclk, rtio_clk_period)
platform.add_period_constraint(gtx0.rxoutclk, rtio_clk_period)
platform.add_false_path_constraints(
self.crg.cd_sys.clk,
gtx0.txoutclk, gtx0.rxoutclk)
# Constrain RX timing for the each transceiver channel
# (Each channel performs single-lane phase alignment for RX)
for gtx in self.drtio_transceiver.gtxs[1:]:
platform.add_period_constraint(gtx.rxoutclk, rtio_clk_period)
platform.add_false_path_constraints(
self.crg.cd_sys.clk, gtx.rxoutclk)
rtio_channels = []
for i in range(8):
phy = ttl_simple.Output(platform.request("user_led", i))
self.submodules += phy
rtio_channels.append(rtio.Channel.from_phy(phy))
for sma in "user_sma_gpio_p", "user_sma_gpio_n":
phy = ttl_simple.InOut(platform.request(sma))
self.submodules += phy
rtio_channels.append(rtio.Channel.from_phy(phy))
self.submodules.rtio_moninj = rtio.MonInj(rtio_channels)
self.csr_devices.append("rtio_moninj")
self.submodules.local_io = SyncRTIO(self.rtio_tsc, rtio_channels)
self.comb += self.drtiosat.async_errors.eq(self.local_io.async_errors)
self.submodules.cri_con = rtio.CRIInterconnectShared(
[self.drtiosat.cri],
[self.local_io.cri] + self.drtio_cri,
mode="sync", enable_routing=True)
self.csr_devices.append("cri_con")
self.submodules.routing_table = rtio.RoutingTableAccess(self.cri_con)
self.csr_devices.append("routing_table")
def main():
parser = argparse.ArgumentParser(
description="ARTIQ device binary builder / KC705 DRTIO satellite")
builder_args(parser)
soc_kc705_args(parser)
parser.set_defaults(output_dir="artiq_kc705/satellite")
parser.add_argument("--sma", default=False, action="store_true",
help="use the SMA connectors (RX: J17, J18, TX: J19, J20) "
"as DRTIO satellite channel instead of the SFP")
args = parser.parse_args()
argdict = dict()
argdict["sma_as_sat"] = args.sma
soc = Satellite(**soc_kc705_argdict(args), **argdict)
build_artiq_soc(soc, builder_argdict(args))
if __name__ == "__main__":
main()