phaser: add README

old/phaser1
Robert Jördens 2016-10-05 19:24:34 +02:00
parent 4a0eaf0f95
commit c54b6e2f3c
2 changed files with 104 additions and 8 deletions

104
README_PHASER.rst Normal file
View File

@ -0,0 +1,104 @@
ARTIQ Phaser
============
This ARTIQ branch contains a proof-of-concept design of a GHz-datarate multichannel direct digital synthesizer (DDS) compatible with ARTIQ's RTIO channels.
In later developments this proof-of-concept can be expanded to provide a two-tone output with spline modulation and multi-DAC synchronization.
Ultimately it will be the basis for the ARTIQ Sayma project. See https://github.com/m-labs/sayma and https://github.com/m-labs/artiq-hardware
The hardware required is a KC705 with an AD9154-FMC-EBZ plugged into the HPC connector and a low-jitter 2 GHz reference clock.
Features:
* 4 channels
* 500 MHz data rate per channel (KC705 limitation)
* 4x interpolation to 2 GHz DAC sample rate
* Real-time control over amplitude, frequency, phase through ARTIQ RTIO
channels
* Full configurability of the AD9154 and AD9516 through SPI with ARTIQ kernel
support
* All SPI registers and register bits exposed as human readable names
* Parametrized JESD204B core (also capable of operation with eight lanes)
* The code can be reconfigured, e.g. to support 2 channels at 1 GHz datarate or to support 4 channels at 300 MHz data rate, no interpolation, and using mix mode to stress the second and third Nyquist zones (150-300 MHz and 300-450 MHz).
This work was supported by the Army Research Lab.
The additions and modifications to ARTIQ that were implemented for this project are:
* In ARTIQ, the SAWG and Phaser code: https://github.com/m-labs/artiq/compare/phaser
* The CORDIC core has been reused from the PDQ2 gateware
https://github.com/m-labs/pdq2
* The Migen/MiSoC JESD204B core: https://github.com/enjoy-digital/litejesd204b
:
Installation
------------
These installation instructions are a short form of those in the ARTIQ manual.
Please refer to the manual for more details:
https://m-labs.hk/artiq/manual-release-2/index.html
* Set up a new conda environment and activate it.
* Checkout the ARTIQ phaser branch::
git clone -b phaser https://github.com/m-labs/artiq.git
* Install the standard ARTIQ runtime/install dependencies.
See ``conda/artiq/meta.yaml`` for a list.
They are all packaged as conda packages in ``m-labs/main``.
* Install the standard ARTIQ build dependencies.
They are all available as conda packages in m-labs/main at least for linux-64:
- migen 0.4
- misoc 0.3
- llvm-or1k
- rust-core-or1k
- cargo
- binutils-or1k-linux >=2.27
* Vivado
Follow the ARTIQ manual's chapter on installing.
Setup
-----
* Setup the KC705 (VADJ, jumpers, etc.) observing the ARTIQ manual.
* On the AD9154-FMC-EBZ put jumpers:
- on XP1, between pin 5 and 6 (will keep the PIC in reset)
- on JP3 (will force output enable on FXLA108)
* Compile the ARTIQ Phaser bitstream, bios, and runtime (c.f. ARTIQ manual):::
python -m artiq.gateware.targets.kc705 -H phaser --toolchain vivado
* Run the following OpenOCD commands to flash the ARTIQ transmitter design:::
init
jtagspi_init 0 bscan_spi_xc7k325t.bit
jtagspi_program misoc_phaser_kc705/gateware/top.bin 0x000000
jtagspi_program misoc_phaser_kc705/software/bios/bios.bin 0xaf0000
jtagspi_program misoc_phaser_kc705/software/runtime/runtime.fbi 0xb00000
xc7_program xc7.tap
exit
The proxy bitstream ``bscan_spi_xc7k325t.bit`` can be found at https://github.com/jordens/bscan_spi_bitstreams or in any ARTIQ conda package for the KC705. See the source code of ``artiq_flash.py`` from ARTIQ for more details.
* Refer to the ARTIQ documentation to configure an IP address and other settings for the transmitter device.
If the board was running stock ARTIQ before, the settings will be kept.
* A 2 GHz of roughly 10 dBm (0.2 to 3.4 V peak-to-peak into 50 Ohm) must be connected to the AD9154-FMC-EBZ J1.
The external RTIO clock, DAC deviceclock, FPGA deviceclock, and SYSREF are derived from this signal.
* The ``startup_clock`` needs to be set to internal (``i``) for bootstrapping the clock distribution tree.
* Compile and flash the startup kernel in ``artiq/examples/phaser/startup_kernel.py``.
Usage
-----
* An example device database, several status and test scripts are provided in ``artiq/examples/phaser/``.
* run ``artiq_run sawg.py`` for an example that sets up amplitudes, frequencies,
and phases on all four DDS channels.
* Implement your own experiments using the SAWG channels.
* Verify clock stability between the 2 GHz reference clock and the DAC outputs.
* Verify phase alignment between the DAC channels.
* Changes to the AD9154 configuration can also be performed at runtime in experiments.
See the example ``startup_kernel.py``.
This can e.g. be used to enable and evaluate mix mode without having to change any other code (bitstream/bios/runtime/startup_kernel).

View File

@ -178,14 +178,6 @@ The SAWG channels start with RTIO channel number 4, each occupying 3 channels.
The board has one non-RTIO SPI bus that is accessible through
:mod:`artiq.coredevice.ad9154`.
* Setup the KC705 observing the notes above and as laid out in :ref:`configuring-core-device`.
* A 2 GHz of roughly 10 dBm (0.2 to 3.4 V peak-to-peak into 50 Ohm) must be connected to the AD9154-FMC-EBZ J1.
The external RTIO clock, DAC deviceclock, FPGA deviceclock, and SYSREF are derived from this signal.
* The ``startup_clock`` needs to be set to internal (``i``) for bootstrapping the clock distribution tree.
See :ref:`configuring-core-device`.
* Compile and flash the startup kernel in ``artiq/examples/phaser/startup_kernel.py``.
* An example ``device_db.pyon`` is provided in ``artiq/examples/phaser/device_db.pyon``.
Pipistrello
-----------