2
0
mirror of https://github.com/m-labs/artiq.git synced 2025-01-12 12:03:35 +08:00

gateware.spi: add complete spi master logic

This commit is contained in:
Robert Jördens 2016-02-27 22:47:16 +01:00
parent ade3eda19a
commit bd9ceb4e12

View File

@ -1,3 +1,5 @@
from itertools import product
from migen import *
from migen.genlib.fsm import *
from migen.genlib.misc import WaitTimer
@ -8,18 +10,22 @@ class SPIMaster(Module):
"""SPI Master.
Notes:
* If there is a miso wire in pads, the input and output are done with
two signals (a.k.a. 4-wire SPI), else mosi is used for both output
and input (a.k.a. 3-wire SPI).
* Every transfer consists of a 0-32 bit write followed by a 0-32
* M = 32 is the data width (width of the data register,
maximum write bits, maximum read bits)
* If there is a miso wire in pads, the input and output can be done
with two signals (a.k.a. 4-wire SPI), else mosi must be used for
both output and input (a.k.a. 3-wire SPI) and config.half_duplex
needs to be set.
* Every transfer consists of a 0-M bit write followed by a 0-M
bit read.
* cs_n is always asserted at the beginning and deasserted
at the end of the tranfer.
at the end of the transfer.
* cs_n handling is agnostic to whether it is one-hot or decoded
somewhere downstream. If it is decoded, "cs_n all deasserted"
should be handled accordingly (no slave selected).
If it is one-hot, asserting multiple slaves should only be attempted
if miso is either not connected between slaves or open collector.
cs can also be handled independently through other means.
* If config.cs_polarity == 0 (cs active low, the default),
"cs_n all deasserted" means "all cs_n bits high".
* The first bit output on mosi is always the MSB/LSB (depending on
@ -32,24 +38,26 @@ class SPIMaster(Module):
between the two. For 3-wire SPI, the direction of mosi/miso is
switched from output to input after write_len cycles, at the
"output" clk edge corresponding to bit write_len + 1 of the transfer.
* Data output on mosi in 4-wire SPI during the read cycles is
undefined. Data in the data register outside the
least/most (depending on config.lsb_first) significant read_len
bits is undefined.
* The transfer is complete when the wishbone transaction is ack-ed.
* Data output on mosi in 4-wire SPI during the read cycles is what
is found in the data register at the time.
Data in the data register outside the least/most (depending
on config.lsb_first) significant read_len bits is what is
seen on miso during the write cycles.
* When the transfer is complete the wishbone transaction is ack-ed.
* Input data from the last transaction can be read from the data
register at any time.
Transaction Sequence:
* if desired, write the xfer register to change lengths and cs_n.
* write the data register (also for zero-length writes),
writing triggers the transfer and the transfer is complete when the
write is complete.
* if desired, read the data register
* If desired, write the config register to set up the core.
* If desired, write the xfer register to change lengths and cs_n.
* Write the data register (also for zero-length writes),
writing triggers the transfer and when the transfer is complete the
write is ack-ed.
* If desired, read the data register.
Register address and bit map:
config (address 0):
config (address 2):
1 offline: all pins high-z (reset=1)
1 cs_polarity: active level of chip select (reset=0)
1 clk_polarity: idle level for clk (reset=0)
@ -59,40 +67,252 @@ class SPIMaster(Module):
(1, 0): idle high, output on rising, input on falling
(1, 1): idle high, output on falling, input on rising
1 lsb_first: LSB is the first bit on the wire (reset=0)
11 undefined
16 speed: divider from this module's clock to the SPI clk
(minimum=2, reset=4)
clk pulses are asymmetric if speed is odd, favoring longer setup
over hold times
1 half_duplex: 3-wire SPI, in/out on mosi (reset=0)
10 undefined
16 clk_load: clock load value to divide from this module's clock
to the SPI write clk clk pulses are asymmetric
if a divider is odd, favoring longer setup over hold times.
clk/spi_clk == clk_load + 2 (reset=0)
xfer (address 1):
16 cs: active high bit mask of chip selects to assert
6 write_len: 0-32 bits
2 undefined
6 read_len: 0-32 bits
2 undefined
8 write_len: 0-M bits
8 read_len: 0-M bits
data (address 2):
32 write/read data
data (address 0):
M write/read data
"""
def __init__(self, pads, bus=None):
def __init__(self, pads, bus=None, data_width=32):
if bus is None:
bus = wishbone.Interface(data_width=32)
bus = wishbone.Interface(data_width=data_width)
self.bus = bus
###
# State machine
wb_we = Signal()
start = Signal()
active = Signal()
fsm = FSM("IDLE")
self.submodules += fsm
fsm.act("IDLE",
If(bus.cyc & bus.stb,
NextState("ACK"),
If(bus.we,
wb_we.eq(1),
If(bus.adr == 0, # data register
NextState("START"),
)
)
)
)
fsm.act("START",
start.eq(1),
NextState("ACTIVE"),
)
fsm.act("ACTIVE",
If(~active,
bus.ack.eq(1),
NextState("IDLE"),
)
)
fsm.act("ACK",
bus.ack.eq(1),
NextState("IDLE"),
)
# Wishbone
config = Record([
("offline", 1),
("cs_polarity", 1),
("clk_polarity", 1),
("clk_phase", 1),
("lsb_first", 1),
("half_duplex", 1),
("padding", 10),
("clk_load", 16),
])
config.offline.reset = 1
assert len(config) <= len(bus.dat_w)
xfer = Record([
("cs", 16),
("write_length", 8),
("read_length", 8),
])
assert len(xfer) <= len(bus.dat_w)
data = Signal.like(bus.dat_w)
wb_data = Array([data, xfer.raw_bits(), config.raw_bits()])[bus.adr]
self.comb += bus.dat_r.eq(wb_data)
self.sync += If(wb_we, wb_data.eq(bus.dat_w))
# SPI
write_count = Signal.like(xfer.write_length)
read_count = Signal.like(xfer.read_length)
clk_count = Signal.like(config.clk_load)
clk = Signal(reset=1) # idle high
phase = Signal()
edge = Signal()
write = Signal()
read = Signal()
miso = Signal()
miso_i = Signal()
mosi_o = Signal()
self.comb += [
phase.eq(clk ^ config.clk_phase),
edge.eq(active & (clk_count == 0)),
write.eq(write_count != 0),
read.eq(read_count != 0),
]
self.sync += [
If(start,
write_count.eq(xfer.write_length),
read_count.eq(xfer.read_length),
active.eq(1),
),
If(active,
clk_count.eq(clk_count - 1),
),
If(start | edge,
# setup time passes during phase 0
# use the lsb to bias that time to favor longer setup times
clk_count.eq(config.clk_load[1:] +
(config.clk_load[0] & phase)),
clk.eq(~clk), # idle high
If(phase,
data.eq(Mux(config.lsb_first,
Cat(data[1:], miso),
Cat(miso, data[:-1]))),
mosi_o.eq(Mux(config.lsb_first, data[0], data[-1])),
If(write,
write_count.eq(write_count - 1),
),
).Else(
miso.eq(miso_i),
If(~write & read,
read_count.eq(read_count - 1),
),
),
),
If(~clk & edge & ~write & ~read, # always from low clk
active.eq(0),
),
]
# I/O
cs_n_t = TSTriple(len(pads.cs_n))
self.specials += cs_n_t.get_tristate(pads.cs_n)
clk_t = TSTriple()
self.specials += clk_t.get_tristate(pads.clk)
mosi_t = TSTriple()
self.specials += mosi_t.get_tristate(pads.mosi)
self.comb += [
cs_n_t.oe.eq(~config.offline),
clk_t.oe.eq(~config.offline),
mosi_t.oe.eq(~config.offline & (write | ~config.half_duplex)),
cs_n_t.o.eq((xfer.cs & Replicate(active, len(xfer.cs))) ^
Replicate(~config.cs_polarity, len(xfer.cs))),
clk_t.o.eq((clk & active) ^ config.clk_polarity),
miso_i.eq(Mux(config.half_duplex, mosi_t.i,
getattr(pads, "miso", mosi_t.i))),
mosi_t.o.eq(mosi_o),
]
SPI_CONFIG_ADDR = 2
SPI_XFER_ADDR = 1
SPI_DATA_ADDR = 0
SPI_OFFLINE = 1 << 0
SPI_CS_POLARITY = 1 << 1
SPI_CLK_POLARITY = 1 << 2
SPI_CLK_PHASE = 1 << 3
SPI_LSB_FIRST = 1 << 4
SPI_HALF_DUPLEX = 1 << 5
def SPI_CLK_LOAD(i):
return i << 16
def SPI_CS(i):
return i << 0
def SPI_WRITE_LENGTH(i):
return i << 16
def SPI_READ_LENGTH(i):
return i << 24
def _test_gen(bus):
yield from bus.write(0, 0 | (5 << 16))
yield from bus.write(SPI_CONFIG_ADDR,
1*SPI_CLK_PHASE | 0*SPI_LSB_FIRST |
1*SPI_HALF_DUPLEX | SPI_CLK_LOAD(3))
yield
yield from bus.write(1, 1 | (24 << 16) | (16 << 24))
yield from bus.write(SPI_XFER_ADDR, SPI_CS(0b00001) |
SPI_WRITE_LENGTH(4) | SPI_READ_LENGTH(0))
yield
yield from bus.write(2, 0x12345678)
yield from bus.write(SPI_DATA_ADDR, 0x90000000)
yield
r = (yield from bus.read(2))
print(r)
print(hex((yield from bus.read(SPI_DATA_ADDR))))
yield
yield from bus.write(SPI_XFER_ADDR, SPI_CS(0b00010) |
SPI_WRITE_LENGTH(4) | SPI_READ_LENGTH(4))
yield
yield from bus.write(SPI_DATA_ADDR, 0x81000000)
yield
print(hex((yield from bus.read(SPI_DATA_ADDR))))
yield
yield from bus.write(SPI_XFER_ADDR, SPI_CS(0b00010) |
SPI_WRITE_LENGTH(0) | SPI_READ_LENGTH(4))
yield
yield from bus.write(SPI_DATA_ADDR, 0x90000000)
yield
print(hex((yield from bus.read(SPI_DATA_ADDR))))
yield
yield from bus.write(SPI_XFER_ADDR, SPI_CS(0b00010) |
SPI_WRITE_LENGTH(32) | SPI_READ_LENGTH(0))
yield
yield from bus.write(SPI_DATA_ADDR, 0x87654321)
yield
print(hex((yield from bus.read(SPI_DATA_ADDR))))
yield
return
for cpol, cpha, lsb, clk in product(
(0, 1), (0, 1), (0, 1), (0, 1)):
yield from bus.write(SPI_CONFIG_ADDR,
cpol*SPI_CLK_POLARITY | cpha*SPI_CLK_PHASE |
lsb*SPI_LSB_FIRST | SPI_CLK_LOAD(clk))
for wlen, rlen, wdata in product((0, 8, 32), (0, 8, 32),
(0, 0xffffffff, 0xdeadbeef)):
yield from bus.write(SPI_XFER_ADDR, SPI_CS(0b00001) |
SPI_WRITE_LENGTH(wlen) |
SPI_READ_LENGTH(rlen))
yield from bus.write(SPI_DATA_ADDR, wdata)
rdata = yield from bus.read(SPI_DATA_ADDR)
len = (wlen + rlen) % 32
mask = (1 << len) - 1
if lsb:
shift = (wlen + rlen) % 32
else:
shift = 0
a = (wdata >> wshift) & wmask
b = (rdata >> rshift) & rmask
if a != b:
print("ERROR", end=" ")
print(cpol, cpha, lsb, clk, wlen, rlen,
hex(wdata), hex(rdata), hex(a), hex(b))
class _TestPads:
@ -104,6 +324,22 @@ class _TestPads:
if __name__ == "__main__":
from migen.fhdl.specials import Tristate
class T(Module):
def __init__(self, t):
oe = Signal()
self.comb += [
t.target.eq(t.o),
oe.eq(t.oe),
t.i.eq(t.o),
]
Tristate.lower = staticmethod(lambda dr: T(dr))
from migen.fhdl.verilog import convert
pads = _TestPads()
dut = SPIMaster(pads)
dut.comb += pads.miso.eq(pads.mosi)
#print(convert(dut))
run_simulation(dut, _test_gen(dut.bus), vcd_name="spi_master.vcd")