2
0
mirror of https://github.com/m-labs/artiq.git synced 2025-01-25 09:58:13 +08:00

test/coredevice: Add host/device consistency checks for NumPy math

This commit is contained in:
David Nadlinger 2020-08-09 17:45:20 +01:00
parent 8e262acd1e
commit ae47d4c0ec

View File

@ -0,0 +1,95 @@
from artiq.experiment import *
import numpy
from artiq.test.hardware_testbench import ExperimentCase
from artiq.compiler import math_fns
class _RunOnDevice(EnvExperiment):
def build(self):
self.setattr_device("core")
@kernel
def run_on_kernel_unary(self, a, callback, numpy):
self.run(a, callback, numpy)
@kernel
def run_on_kernel_binary(self, a, b, callback, numpy):
self.run(a, b, callback, numpy)
# Binary operations supported for scalars and arrays of any dimension, including
# broadcasting.
ELEM_WISE_BINOPS = ["+", "*", "//", "%", "**", "-", "/"]
class CompareHostDeviceTest(ExperimentCase):
def _test_binop(self, op, a, b):
exp = self.create(_RunOnDevice)
exp.run = kernel_from_string(["a", "b", "callback", "numpy"],
"callback(a " + op + "b)",
decorator=portable)
checked = False
def with_host_result(host):
def with_both_results(device):
nonlocal checked
checked = True
self.assertTrue(
numpy.allclose(host, device),
"Discrepancy in binop test for '{}': Expexcted ({}, {}) -> {}, got {}"
.format(op, a, b, host, device))
exp.run_on_kernel_binary(a, b, with_both_results, numpy)
exp.run(a, b, with_host_result, numpy)
self.assertTrue(checked, "Test did not run")
def _test_unaryop(self, op, a):
exp = self.create(_RunOnDevice)
exp.run = kernel_from_string(["a", "callback", "numpy"],
"callback(" + op + ")",
decorator=portable)
checked = False
def with_host_result(host):
def with_both_results(device):
nonlocal checked
checked = True
self.assertTrue(
numpy.allclose(host, device),
"Discrepancy in unaryop test for '{}': Expexcted {} -> {}, got {}"
.format(op, a, host, device))
exp.run_on_kernel_unary(a, with_both_results, numpy)
exp.run(a, with_host_result, numpy)
self.assertTrue(checked, "Test did not run")
def test_scalar_scalar_binops(self):
# Some arbitrarily chosen arguments of different types. Could be turned into
# randomised tests instead.
# TODO: Provoke overflows, division by zero, etc., and compare results.
args = [(typ(a), typ(b)) for a, b in [(0, 1), (3, 2), (11, 6)]
for typ in [numpy.int32, numpy.int64, numpy.float]]
for op in ELEM_WISE_BINOPS:
for arg in args:
self._test_binop(op, *arg)
def test_scalar_matrix_binops(self):
for typ in [numpy.int32, numpy.int64, numpy.float]:
scalar = typ(3)
matrix = numpy.array([[4, 5, 6], [7, 8, 9]], dtype=typ)
for op in ELEM_WISE_BINOPS:
self._test_binop(op, scalar, matrix)
self._test_binop(op, matrix, scalar)
self._test_binop(op, matrix, matrix)
def test_unary_math_fns(self):
names = [
a for a, _ in math_fns.unary_fp_intrinsics + math_fns.unary_fp_runtime_calls
]
for name in names:
op = "numpy.{}(a)".format(name)
print(op)
self._test_unaryop(op, 0.5)
self._test_unaryop(op, numpy.array([[0.3, 0.4], [0.5, 0.6]]))