2
0
mirror of https://github.com/m-labs/artiq.git synced 2025-01-27 19:03:03 +08:00

wavesynth: get coefficients.py into useable state

SplineSource() supports spline interpolating multi-channel tabular data,
cropping it and generating wavesynth compatible segment data from it.

ComposingSplineSource() needs some verification still.
This commit is contained in:
Robert Jördens 2015-04-18 01:12:24 -06:00
parent 5805240df6
commit 60baed68b4
3 changed files with 281 additions and 47 deletions

View File

@ -0,0 +1,38 @@
import unittest
import numpy as np
from artiq.wavesynth import coefficients, compute_samples
class TestSplineCoef(unittest.TestCase):
def setUp(self):
self.x = np.arange(5.)
self.y = np.sin(2*np.pi*self.x/5) + np.arange(2)[:, None]
self.s = coefficients.SplineSource(self.x, self.y, order=4)
def test_get_segment(self):
return list(self.s.get_segment_data(1.5, 3.2, 1/100.))
def test_synth(self):
d = self.test_get_segment()
d[0]["trigger"] = True
return compute_samples.Synthesizer(self.y.shape[0], [d, d + d])
def drive(self, s):
y = []
for f in 0, 1, None, 0:
if f is not None:
s.select(f)
y += s.trigger()[0]
return y
def test_run(self):
return self.drive(self.test_synth())
@unittest.skip("manual/visual test")
def test_plot(self):
import cairoplot
y = self.test_run()
x = list(range(len(y)))
cairoplot.scatter_plot("plot.png", [x, y])

View File

@ -1,67 +1,263 @@
import numpy as np
from scipy.interpolate import splrep, splev, spalde
from scipy.special import binom
class UnivariateMultiSpline:
"""Multidimensional wrapper around `scipy.interpolate.sp*` functions.
`scipy.inteprolate.splprep` unfortunately does only up to 12 dimsions.
"""
def __init__(self, x, y, order=4):
self.order = order
self.s = [splrep(x, yi, k=order - 1) for yi in y]
def lev(self, x, *a, **k):
return np.array([splev(x, si) for si in self.s])
def alde(self, x):
u = np.array([spalde(x, si) for si in self.s])
if len(x) == 1:
u = u[:, None, :]
return u
def __call__(self, x, use_alde=True):
if use_alde:
u = self.alde(x)[:, :, :self.order]
s = (len(self.s), len(x), self.order)
assert u.shape == s, (u.shape, s)
return u.transpose(2, 0, 1)
else:
return np.array([self.lev(x, der=i) for i in range(self.order)])
class UnivariateMultiSparseSpline(UnivariateMultiSpline):
def __init__(self, d, x0=None, order=4):
self.order = order
self.n = sorted(set(n for x, n, y in d))
self.s = []
for n in self.n:
x, y = np.array([(x, y) for x, ni, y in d if n == ni]).T
if x0 is not None:
y0 = splev(x0, splrep(x, y, k=order - 1))
x, y = x0, y0
s = splrep(x, y, k=order - 1)
self.s.append(s)
def pad_const(x, n, axis=0):
"""Prefix and postfix the array `x` by `n` repetitions of the first and
last vlaue along `axis`.
"""
a = np.repeat(x.take([0], axis), n, axis)
b = np.repeat(x.take([-1], axis), n, axis)
xp = np.concatenate([a, x, b], axis)
s = list(x.shape)
s[axis] += 2*n
assert xp.shape == tuple(s), (x.shape, s, xp.shape)
return xp
def build_segment(durations, coefficients, target="bias",
variable="amplitude"):
"""Build a wavesynth-style segment from homogeneous duration and
coefficient data.
:param durations: 1D sequence of line durations.
:param coefficients: 3D array with shape `(n, m, len(x))`,
with `n` being the interpolation order + 1 and `m` the number of
channels.
:param target: The target component of the channel to affect.
:param variable: The variable within the target component.
"""
for dxi, yi in zip(durations, coefficients.transpose()):
d = {"duration": int(dxi)}
d["channel_data"] = cd = []
for yij in yi:
cdj = []
for yijk in reversed(yij):
if cdj or abs(yijk):
cdj.append(float(yijk))
cdj.reverse()
cd.append({target: {variable: cdj}})
yield d
class CoefficientSource:
def get_times(self, t, speed, clock):
pass
def crop_x(self, start, stop, num=2):
"""Return an array of valid sample positions.
def get_coefficients(self, t, speed):
pass
This function needs to be implemented only if this
`CoefficientSource` does not support sampling at arbitrary
positions.
def get_program(self, dt, u):
pass
:param start: First sample position.
:param stop: Last sample position.
:param num: Number of samples between `start` and `stop`.
:return: Array of sample positions. `start` and `stop` should be
returned as the first and last value in the array respectively.
"""
return np.linspace(start, stop, num)
def scale_x(self, x, scale):
"""Scale and round sample positions.
:param x: Input sample positions in data space.
:param scale: Data space position to cycles conversion scale,
in units of x-units per clock cycle.
:return: `x_sample`, the rounded sample positions and `durations`, the
integer durations of the individual samples in cycles.
"""
raise NotImplementedError
def __call__(self, x, **kwargs):
"""Perform sampling and return coefficients.
:param x: Sample positions.
:return: `y` the array of coefficients. `y.shape == (order, n, len(x))`
with `n` being the number of channels."""
raise NotImplementedError
def get_segment_data(self, start, stop, scale, cutoff=1e-12,
min_duration=1, min_length=20,
target="bias", variable="amplitude"):
"""Build wavesynth segment data.
:param start: see `crop_x()`.
:param stop: see `crop_x()`.
:param scale: see `scale_x()`.
:param num: see `crop_x()`.
:param cutoff: coefficient cutoff towards zero to compress data.
:param min_duration: Minimum duration of a line.
:param min_length: Minimum segment length to space triggers.
"""
x = self.crop_x(start, stop)
x_sample, durations = self.scale_x(x, scale)
coefficients = self(x_sample)
np.clip(np.fabs(durations), min_duration, None, out=durations)
if len(durations) == 1:
durations[0] = max(durations[0], min_length)
if start == stop:
coefficients = coefficients[:1]
# rescale coefficients accordingly
coefficients *= (scale*np.sign(durations))**np.arange(
coefficients.shape[0])[:, None, None]
if cutoff:
coefficients[np.fabs(coefficients) < cutoff] = 0
return build_segment(durations, coefficients, target=target,
variable=variable)
def extend_segment(self, segment, *args, **kwargs):
"""Extend a wavesynth segment.
See `get_segment()` for arguments.
"""
for line in self.get_segment_data(*args, **kwargs):
segment.add_line(**line)
def _round_times(times, sample_times=None):
times = np.asanyarray(times)
if sample_times is None:
sample_times = np.rint(times)
duration = np.diff(sample_times)
sample_times = sample_times[:-1]
assert np.all(duration >= 0)
assert np.all(duration < (1 << 16))
return times, sample_times, duration
class SplineSource(CoefficientSource):
def __init__(self, x, y, order=4, pad_dx=1.):
"""
:param x: 1D sample positions.
:param y: 2D sample values.
"""
self.x = np.asanyarray(x)
assert self.x.ndim == 1
self.y = np.asanyarray(y)
assert self.y.ndim == 2
if pad_dx is not None:
a = np.arange(-order, 0)*pad_dx + self.x[0]
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
self.x = np.r_[a, self.x, b]
self.y = pad_const(self.y, order, axis=1)
assert self.y.shape[1] == self.x.shape[0]
self.spline = UnivariateMultiSpline(self.x, self.y, order)
def crop_x(self, start, stop):
ia, ib = np.searchsorted(self.x, (start, stop))
if start > stop:
x = self.x[ia - 1:ib - 1:-1]
else:
x = self.x[ia:ib]
return np.r_[start, x, stop]
def scale_x(self, x, scale, nudge=1e-9):
# We want to only sample a spline at t_knot + epsilon
# where the highest order derivative has just jumped
# and is valid at least up to the next knot after t_knot.
#
# To ensure that we are on the right side of a knot:
# * only ever increase t when rounding (for increasing t)
# * or only ever decrease it (for decreasing t)
#
# The highest derivative is discontinuous at t
# and the correct value for a segment is obtained
# for t_int >= t_float == t_knot (and v.v. for t decreasing).
x = x/scale
inc = np.diff(x) >= 0
inc = np.r_[inc, inc[-1]]
x = np.where(inc, np.ceil(x + nudge), np.floor(x - nudge))
if len(x) > 1 and x[0] == x[1]:
x = x[1:]
if len(x) > 1 and x[-2] == x[-1]:
x = x[:-1]
x_sample = x[:-1]*scale
durations = np.diff(x.astype(np.int))
return x_sample, durations
def __call__(self, x):
return self.spline(x)
def _interpolate(time, data, sample_times, order=3):
# FIXME: this does not ensure that the spline does not clip
spline = splrep(time, data, k=order or 1)
# FIXME: this could be faster but needs k knots outside t_eval
# dv = np.array(spalde(t_eval, s))
coeffs = np.array([splev(sample_times, spline, der=i, ext=0)
for i in range(order + 1)]).T
return coeffs
class ComposingSplineSource(SplineSource):
# TODO
def __init__(self, x, y, components, order=4, pad_dx=1.):
self.x = np.asanyarray(x)
assert self.x.ndim == 1
self.y = np.asanyarray(y)
assert self.y.ndim == 3
if pad_dx is not None:
a = np.arange(-order, 0)*pad_dx + self.x[0]
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
self.x = np.r_[a, self.x, b]
self.y = pad_const(self.y, order, axis=2)
assert self.y.shape[2] == self.x.shape[0]
self.splines = [UnivariateMultiSpline(self.x, yi, order)
for yi in self.y]
def _zip_program(times, channels, target):
for tc in zip(times, *channels):
yield {
"duration": tc[0],
"channel_data": tc[1:],
}
# FIXME: this does not handle:
# `clear` (clearing the phase accumulator)
# `silence` (stopping the dac clock)
# need to resample/upsample the shim splines to the master spline knots
# shim knot spacings can span an master spline knot and thus would
# cross a highest order derivative boundary
self.components = UnivariateMultiSparseSpline(
components, self.x, order)
def __call__(self, t, gain={}, offset={}):
der = list((set(self.components.n) | set(offset)) & set(self.der))
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
# der, order, ele, t
p = np.array([self.splines[i](t) for i in der])
# order, der, None, t
s = self.components(t)
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
s = s[:, :, None, :]*s_gain[None, :, None, None]
for k, v in offset.items():
if v and k in self.der:
u += v*p[self.der.index(k)]
ps = p[[self.der.index(_) for _ in self.shims.der]]
for i in range(u.shape[1]):
for j in range(i + 1):
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
return u # (order, ele, t)
def interpolate_channels(times, data, sample_times=None, **kwargs):
if len(times) == 1:
return _zip_program(np.array([1]), data[:, :, None])
data = np.asanyarray(data)
assert len(times) == len(data)
times, sample_times, duration = _round_times(times, sample_times)
channel_coeff = [_interpolate(sample_times, i, **kwargs) for i in data.T]
return _zip_program(duration, np.array(channel_coeff))
# v = np.clip(v/self.max_out, -1, 1)
#
#
def discrete_compensate(c):
"""Compensate spline coefficients for discrete accumulators
Given continuous time b-spline coefficients, this function
Given continuous-time b-spline coefficients, this function
compensates for the effect of discrete time steps in the
target devices.

View File

@ -81,17 +81,17 @@ class Synthesizer:
def select(self, selection):
if self.line_iter is not None:
raise TriggerError
raise TriggerError("a frame is already selected")
self.line_iter = iter(self.program[selection])
self.line = next(self.line_iter)
def trigger(self):
if self.line_iter is None:
raise TriggerError
raise TriggerError("no frame selected")
line = self.line
if not line.get("trigger", False):
raise TriggerError
raise TriggerError("segment is not triggered")
r = [[] for _ in self.channels]
while True: