From 4e37ac4690dd75b1f877585b679c3a47080aa937 Mon Sep 17 00:00:00 2001 From: abdul124 Date: Thu, 1 Aug 2024 17:51:05 +0800 Subject: [PATCH] kernel/ksupport: add linalg functions --- artiq/firmware/ksupport/api.rs | 12 + artiq/firmware/ksupport/linalg.rs | 440 ++++++++++++++++++++++++++++++ 2 files changed, 452 insertions(+) create mode 100644 artiq/firmware/ksupport/linalg.rs diff --git a/artiq/firmware/ksupport/api.rs b/artiq/firmware/ksupport/api.rs index 47b2e5551..051820666 100644 --- a/artiq/firmware/ksupport/api.rs +++ b/artiq/firmware/ksupport/api.rs @@ -117,6 +117,18 @@ static mut API: &'static [(&'static str, *const ())] = &[ api!(y1), api!(yn), + // linalg + api!(np_linalg_cholesky = ::linalg::np_linalg_cholesky), + api!(np_linalg_qr = ::linalg::np_linalg_qr), + api!(np_linalg_svd = ::linalg::np_linalg_svd), + api!(np_linalg_inv = ::linalg::np_linalg_inv), + api!(np_linalg_pinv = ::linalg::np_linalg_pinv), + api!(np_linalg_matrix_power = ::linalg::np_linalg_matrix_power), + api!(np_linalg_det = ::linalg::np_linalg_det), + api!(sp_linalg_lu = ::linalg::sp_linalg_lu), + api!(sp_linalg_schur = ::linalg::sp_linalg_schur), + api!(sp_linalg_hessenberg = ::linalg::sp_linalg_hessenberg), + /* exceptions */ api!(_Unwind_Resume = ::unwind::_Unwind_Resume), api!(__nac3_personality = ::eh_artiq::personality), diff --git a/artiq/firmware/ksupport/linalg.rs b/artiq/firmware/ksupport/linalg.rs new file mode 100644 index 000000000..b5e5769ed --- /dev/null +++ b/artiq/firmware/ksupport/linalg.rs @@ -0,0 +1,440 @@ +// Uses `nalgebra` crate to invoke `np_linalg` and `sp_linalg` functions +// When converting between `nalgebra::Matrix` and `NDArray` following considerations are necessary +// +// * Both `nalgebra::Matrix` and `NDArray` require their content to be stored in row-major order +// * `NDArray` data pointer can be directly read and converted to `nalgebra::Matrix` (row and column number must be known) +// * `nalgebra::Matrix::as_slice` returns the content of matrix in column-major order and initial data needs to be transposed before storing it in `NDArray` data pointer + +use alloc::vec::Vec; +use core::slice; + +use nalgebra::DMatrix; + +use crate::artiq_raise; + +pub struct InputMatrix { + pub ndims: usize, + pub dims: *const usize, + pub data: *mut f64, +} + +impl InputMatrix { + fn get_dims(&mut self) -> Vec { + let dims = unsafe { slice::from_raw_parts(self.dims, self.ndims) }; + dims.to_vec() + } +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_cholesky(mat1: *mut InputMatrix, out: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out = out.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + if dim1[0] != dim1[1] { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + + let outdim = out.get_dims(); + let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) }; + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + + let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let result = matrix1.cholesky(); + match result { + Some(res) => { + out_slice.copy_from_slice(res.unpack().transpose().as_slice()); + } + None => { + artiq_raise!("LinAlgError", "Matrix is not positive definite"); + } + }; +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_qr(mat1: *mut InputMatrix, out_q: *mut InputMatrix, out_r: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out_q = out_q.as_mut().unwrap(); + let out_r = out_r.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + let outq_dim = (*out_q).get_dims(); + let outr_dim = (*out_r).get_dims(); + + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]) }; + let out_r_slice = unsafe { slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]) }; + + // Refer to https://github.com/dimforge/nalgebra/issues/735 + let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + + let res = matrix1.qr(); + let (q, r) = res.unpack(); + + // Uses different algo need to match numpy + out_q_slice.copy_from_slice(q.transpose().as_slice()); + out_r_slice.copy_from_slice(r.transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_svd( + mat1: *mut InputMatrix, + outu: *mut InputMatrix, + outs: *mut InputMatrix, + outvh: *mut InputMatrix, +) { + let mat1 = mat1.as_mut().unwrap(); + let outu = outu.as_mut().unwrap(); + let outs = outs.as_mut().unwrap(); + let outvh = outvh.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + let outu_dim = (*outu).get_dims(); + let outs_dim = (*outs).get_dims(); + let outvh_dim = (*outvh).get_dims(); + + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let out_u_slice = unsafe { slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]) }; + let out_s_slice = unsafe { slice::from_raw_parts_mut(outs.data, outs_dim[0]) }; + let out_vh_slice = unsafe { slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let result = matrix.svd(true, true); + out_u_slice.copy_from_slice(result.u.unwrap().transpose().as_slice()); + out_s_slice.copy_from_slice(result.singular_values.as_slice()); + out_vh_slice.copy_from_slice(result.v_t.unwrap().transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_inv(mat1: *mut InputMatrix, out: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out = out.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + let dim1 = (*mat1).get_dims(); + + if dim1[0] != dim1[1] { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + + let outdim = out.get_dims(); + let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) }; + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + if !matrix.is_invertible() { + artiq_raise!("LinAlgError", "no inverse for Singular Matrix"); + } + let inv = matrix.try_inverse().unwrap(); + out_slice.copy_from_slice(inv.transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_pinv(mat1: *mut InputMatrix, out: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out = out.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + let dim1 = (*mat1).get_dims(); + let outdim = out.get_dims(); + let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) }; + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let svd = matrix.svd(true, true); + let inv = svd.pseudo_inverse(1e-15); + + match inv { + Ok(m) => { + out_slice.copy_from_slice(m.transpose().as_slice()); + } + Err(_) => { + artiq_raise!("LinAlgError", "SVD computation does not converge"); + } + } +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_matrix_power(mat1: *mut InputMatrix, mat2: *mut InputMatrix, out: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let mat2 = mat2.as_mut().unwrap(); + let out = out.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + let power = unsafe { slice::from_raw_parts_mut(mat2.data, 1) }; + let power = power[0]; + let outdim = out.get_dims(); + let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) }; + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let mut abs_power = power; + if abs_power < 0.0 { + abs_power = abs_power * -1.0; + } + let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + if !matrix1.is_square() { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + let mut result = matrix1.pow(abs_power as u32); + + if power < 0.0 { + if !matrix1.is_invertible() { + artiq_raise!("LinAlgError", "no inverse for Singular Matrix"); + } + result = result.try_inverse().unwrap(); + } + out_slice.copy_from_slice(result.transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn np_linalg_det(mat1: *mut InputMatrix, out: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out = out.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + let dim1 = (*mat1).get_dims(); + let out_slice = unsafe { slice::from_raw_parts_mut(out.data, 1) }; + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + if !matrix.is_square() { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + out_slice[0] = matrix.determinant(); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn sp_linalg_lu(mat1: *mut InputMatrix, out_l: *mut InputMatrix, out_u: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out_l = out_l.as_mut().unwrap(); + let out_u = out_u.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + let outl_dim = (*out_l).get_dims(); + let outu_dim = (*out_u).get_dims(); + + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let out_l_slice = unsafe { slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]) }; + let out_u_slice = unsafe { slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let (_, l, u) = matrix.lu().unpack(); + + out_l_slice.copy_from_slice(l.transpose().as_slice()); + out_u_slice.copy_from_slice(u.transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn sp_linalg_schur(mat1: *mut InputMatrix, out_t: *mut InputMatrix, out_z: *mut InputMatrix) { + let mat1 = mat1.as_mut().unwrap(); + let out_t = out_t.as_mut().unwrap(); + let out_z = out_z.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + + if dim1[0] != dim1[1] { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + + let out_t_dim = (*out_t).get_dims(); + let out_z_dim = (*out_z).get_dims(); + + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let out_t_slice = unsafe { slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]) }; + let out_z_slice = unsafe { slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let (z, t) = matrix.schur().unpack(); + + out_t_slice.copy_from_slice(t.transpose().as_slice()); + out_z_slice.copy_from_slice(z.transpose().as_slice()); +} + +/// # Safety +/// +/// `mat1` should point to a valid 2DArray of `f64` floats in row-major order +#[no_mangle] +pub unsafe extern "C" fn sp_linalg_hessenberg( + mat1: *mut InputMatrix, + out_h: *mut InputMatrix, + out_q: *mut InputMatrix, +) { + let mat1 = mat1.as_mut().unwrap(); + let out_h = out_h.as_mut().unwrap(); + let out_q = out_q.as_mut().unwrap(); + + if mat1.ndims != 2 { + artiq_raise!( + "ValueError", + "expected 2D Vector Input, but received {1}D input)", + 0, + mat1.ndims as i64, + 0 + ); + } + + let dim1 = (*mat1).get_dims(); + + if dim1[0] != dim1[1] { + artiq_raise!( + "ValueError", + "last 2 dimensions of the array must be square: {1} != {2}", + 0, + dim1[0] as i64, + dim1[1] as i64 + ); + } + + let out_h_dim = (*out_h).get_dims(); + let out_q_dim = (*out_q).get_dims(); + + let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) }; + let out_h_slice = unsafe { slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]) }; + let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]) }; + + let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1); + let (q, h) = matrix.hessenberg().unpack(); + + out_h_slice.copy_from_slice(h.transpose().as_slice()); + out_q_slice.copy_from_slice(q.transpose().as_slice()); +}