mirror of https://github.com/m-labs/artiq.git
coefficients: cleanup and refactor some code into CoefficientSource
This commit is contained in:
parent
904bcd247f
commit
0b8d496b62
|
@ -46,7 +46,7 @@ class UnivariateMultiSparseSpline(UnivariateMultiSpline):
|
||||||
|
|
||||||
def pad_const(x, n, axis=0):
|
def pad_const(x, n, axis=0):
|
||||||
"""Prefix and postfix the array `x` by `n` repetitions of the first and
|
"""Prefix and postfix the array `x` by `n` repetitions of the first and
|
||||||
last vlaue along `axis`.
|
last value along `axis`.
|
||||||
"""
|
"""
|
||||||
a = np.repeat(x.take([0], axis), n, axis)
|
a = np.repeat(x.take([0], axis), n, axis)
|
||||||
b = np.repeat(x.take([-1], axis), n, axis)
|
b = np.repeat(x.take([-1], axis), n, axis)
|
||||||
|
@ -86,9 +86,9 @@ class CoefficientSource:
|
||||||
def crop_x(self, start, stop, num=2):
|
def crop_x(self, start, stop, num=2):
|
||||||
"""Return an array of valid sample positions.
|
"""Return an array of valid sample positions.
|
||||||
|
|
||||||
This function needs to be implemented only if this
|
This method needs to be overloaded if this `CoefficientSource`
|
||||||
`CoefficientSource` does not support sampling at arbitrary
|
does not support sampling at arbitrary positions or at arbitrary
|
||||||
positions.
|
density.
|
||||||
|
|
||||||
:param start: First sample position.
|
:param start: First sample position.
|
||||||
:param stop: Last sample position.
|
:param stop: Last sample position.
|
||||||
|
@ -99,15 +99,23 @@ class CoefficientSource:
|
||||||
return np.linspace(start, stop, num)
|
return np.linspace(start, stop, num)
|
||||||
|
|
||||||
def scale_x(self, x, scale):
|
def scale_x(self, x, scale):
|
||||||
|
# TODO: This could be moved to the the Driver/Mediator code as it is
|
||||||
|
# device-specific.
|
||||||
"""Scale and round sample positions.
|
"""Scale and round sample positions.
|
||||||
|
|
||||||
|
The sample times may need to be changed and/or decimated if
|
||||||
|
incompatible with hardware requirements.
|
||||||
|
|
||||||
:param x: Input sample positions in data space.
|
:param x: Input sample positions in data space.
|
||||||
:param scale: Data space position to cycles conversion scale,
|
:param scale: Data space position to cycles conversion scale,
|
||||||
in units of x-units per clock cycle.
|
in units of x-units per clock cycle.
|
||||||
:return: `x_sample`, the rounded sample positions and `durations`, the
|
:return: `x_sample`, the rounded sample positions and `durations`, the
|
||||||
integer durations of the individual samples in cycles.
|
integer durations of the individual samples in cycles.
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
t = np.rint(x/scale)
|
||||||
|
x_sample = t*scale
|
||||||
|
durations = np.diff(t).astype(np.int)
|
||||||
|
return x_sample, durations
|
||||||
|
|
||||||
def __call__(self, x, **kwargs):
|
def __call__(self, x, **kwargs):
|
||||||
"""Perform sampling and return coefficients.
|
"""Perform sampling and return coefficients.
|
||||||
|
@ -118,25 +126,18 @@ class CoefficientSource:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def get_segment_data(self, start, stop, scale, cutoff=1e-12,
|
def get_segment_data(self, start, stop, scale, cutoff=1e-12,
|
||||||
min_duration=1, min_length=20,
|
|
||||||
target="bias", variable="amplitude"):
|
target="bias", variable="amplitude"):
|
||||||
"""Build wavesynth segment data.
|
"""Build wavesynth segment data.
|
||||||
|
|
||||||
:param start: see `crop_x()`.
|
:param start: see `crop_x()`.
|
||||||
:param stop: see `crop_x()`.
|
:param stop: see `crop_x()`.
|
||||||
:param scale: see `scale_x()`.
|
:param scale: see `scale_x()`.
|
||||||
:param num: see `crop_x()`.
|
|
||||||
:param cutoff: coefficient cutoff towards zero to compress data.
|
:param cutoff: coefficient cutoff towards zero to compress data.
|
||||||
:param min_duration: Minimum duration of a line.
|
|
||||||
:param min_length: Minimum segment length to space triggers.
|
|
||||||
"""
|
"""
|
||||||
x = self.crop_x(start, stop)
|
x = self.crop_x(start, stop)
|
||||||
x_sample, durations = self.scale_x(x, scale)
|
x_sample, durations = self.scale_x(x, scale)
|
||||||
coefficients = self(x_sample)
|
coefficients = self(x_sample)
|
||||||
np.clip(np.fabs(durations), min_duration, None, out=durations)
|
if len(x_sample) == 1 and start == stop:
|
||||||
if len(durations) == 1:
|
|
||||||
durations[0] = max(durations[0], min_length)
|
|
||||||
if start == stop:
|
|
||||||
coefficients = coefficients[:1]
|
coefficients = coefficients[:1]
|
||||||
# rescale coefficients accordingly
|
# rescale coefficients accordingly
|
||||||
coefficients *= (scale*np.sign(durations))**np.arange(
|
coefficients *= (scale*np.sign(durations))**np.arange(
|
||||||
|
@ -146,12 +147,14 @@ class CoefficientSource:
|
||||||
return build_segment(durations, coefficients, target=target,
|
return build_segment(durations, coefficients, target=target,
|
||||||
variable=variable)
|
variable=variable)
|
||||||
|
|
||||||
def extend_segment(self, segment, *args, **kwargs):
|
def extend_segment(self, segment, trigger=True, *args, **kwargs):
|
||||||
"""Extend a wavesynth segment.
|
"""Extend a wavesynth segment.
|
||||||
|
|
||||||
See `get_segment()` for arguments.
|
See `get_segment()` for arguments.
|
||||||
"""
|
"""
|
||||||
for line in self.get_segment_data(*args, **kwargs):
|
for i, line in enumerate(self.get_segment_data(*args, **kwargs)):
|
||||||
|
if i == 0:
|
||||||
|
line["trigger"] = True
|
||||||
segment.add_line(**line)
|
segment.add_line(**line)
|
||||||
|
|
||||||
|
|
||||||
|
@ -183,36 +186,42 @@ class SplineSource(CoefficientSource):
|
||||||
x = self.x[ia:ib]
|
x = self.x[ia:ib]
|
||||||
return np.r_[start, x, stop]
|
return np.r_[start, x, stop]
|
||||||
|
|
||||||
def scale_x(self, x, scale, nudge=1e-9):
|
def scale_x(self, x, scale, min_duration=1, min_length=20):
|
||||||
|
"""
|
||||||
|
Due to minimum duration and/or minimum segment length constraints
|
||||||
|
this method may drop samples from `x_sample` or adjust `durations` to
|
||||||
|
comply. But `x_sample` and `durations` should be kept consistent.
|
||||||
|
|
||||||
|
:param min_duration: Minimum duration of a line.
|
||||||
|
:param min_length: Minimum segment length to space triggers.
|
||||||
|
"""
|
||||||
# We want to only sample a spline at t_knot + epsilon
|
# We want to only sample a spline at t_knot + epsilon
|
||||||
# where the highest order derivative has just jumped
|
# where the highest order derivative has just jumped
|
||||||
# and is valid at least up to the next knot after t_knot.
|
# and is valid at least up to the next knot after t_knot.
|
||||||
#
|
#
|
||||||
# To ensure that we are on the right side of a knot:
|
# To ensure that we are on the correct side of a knot:
|
||||||
# * only ever increase t when rounding (for increasing t)
|
# * only ever increase t when rounding (for increasing t)
|
||||||
# * or only ever decrease it (for decreasing t)
|
# * or only ever decrease it (for decreasing t)
|
||||||
#
|
t = x/scale
|
||||||
# The highest derivative is discontinuous at t
|
inc = np.diff(t) >= 0
|
||||||
# and the correct value for a segment is obtained
|
|
||||||
# for t_int >= t_float == t_knot (and v.v. for t decreasing).
|
|
||||||
x = x/scale
|
|
||||||
inc = np.diff(x) >= 0
|
|
||||||
inc = np.r_[inc, inc[-1]]
|
inc = np.r_[inc, inc[-1]]
|
||||||
x = np.where(inc, np.ceil(x + nudge), np.floor(x - nudge))
|
t = np.where(inc, np.ceil(t), np.floor(t))
|
||||||
if len(x) > 1 and x[0] == x[1]:
|
dt = np.diff(t.astype(np.int))
|
||||||
x = x[1:]
|
|
||||||
if len(x) > 1 and x[-2] == x[-1]:
|
valid = np.absolute(dt) >= min_duration
|
||||||
x = x[:-1]
|
dt = dt[valid]
|
||||||
x_sample = x[:-1]*scale
|
t = t[np.r_[True, valid]]
|
||||||
durations = np.diff(x.astype(np.int))
|
if dt.shape[0] == 1:
|
||||||
return x_sample, durations
|
dt[0] = max(dt[0], min_length)
|
||||||
|
x_sample = t[:-1]*scale
|
||||||
|
return x_sample, dt
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
return self.spline(x)
|
return self.spline(x)
|
||||||
|
|
||||||
|
|
||||||
class ComposingSplineSource(SplineSource):
|
class ComposingSplineSource(SplineSource):
|
||||||
# TODO
|
# TODO: verify, test, document
|
||||||
def __init__(self, x, y, components, order=4, pad_dx=1.):
|
def __init__(self, x, y, components, order=4, pad_dx=1.):
|
||||||
self.x = np.asanyarray(x)
|
self.x = np.asanyarray(x)
|
||||||
assert self.x.ndim == 1
|
assert self.x.ndim == 1
|
||||||
|
@ -236,18 +245,18 @@ class ComposingSplineSource(SplineSource):
|
||||||
components, self.x, order)
|
components, self.x, order)
|
||||||
|
|
||||||
def __call__(self, t, gain={}, offset={}):
|
def __call__(self, t, gain={}, offset={}):
|
||||||
der = list((set(self.components.n) | set(offset)) & set(self.der))
|
der = list((set(self.components.n) | set(offset))
|
||||||
|
& set(range(len(self.splines))))
|
||||||
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
|
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
|
||||||
# der, order, ele, t
|
# der, order, ele, t
|
||||||
p = np.array([self.splines[i](t) for i in der])
|
p = np.array([self.splines[i](t) for i in der])
|
||||||
# order, der, None, t
|
|
||||||
s = self.components(t)
|
|
||||||
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
|
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
|
||||||
s = s[:, :, None, :]*s_gain[None, :, None, None]
|
# order, der, None, t
|
||||||
|
s = self.components(t)[:, :, None, :]*s_gain[None, :, None, None]
|
||||||
for k, v in offset.items():
|
for k, v in offset.items():
|
||||||
if v and k in self.der:
|
if v:
|
||||||
u += v*p[self.der.index(k)]
|
u += v*p[k]
|
||||||
ps = p[[self.der.index(_) for _ in self.shims.der]]
|
ps = p[self.shims.n]
|
||||||
for i in range(u.shape[1]):
|
for i in range(u.shape[1]):
|
||||||
for j in range(i + 1):
|
for j in range(i + 1):
|
||||||
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
|
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
|
||||||
|
|
Loading…
Reference in New Issue