artiq-zynq/src/libboard_artiq/src/si549.rs

594 lines
19 KiB
Rust

use core::result::Result::Ok;
use embedded_hal::prelude::_embedded_hal_blocking_delay_DelayUs;
use libboard_zynq::timer::GlobalTimer;
use log::info;
use crate::pl::csr;
#[cfg(feature = "target_kasli_soc")]
const ADDRESS: u8 = 0x67;
mod i2c {
use super::*;
#[derive(Clone, Copy)]
pub enum DCXO {
Main,
#[cfg(has_wrpll)]
Helper,
}
fn half_period(timer: &mut GlobalTimer) {
timer.delay_us(1)
}
const SDA_MASK: u8 = 2;
const SCL_MASK: u8 = 1;
fn sda_i(dcxo: DCXO) -> bool {
let reg = match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_in_read() },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_in_read() },
};
reg & SDA_MASK != 0
}
fn sda_oe(dcxo: DCXO, oe: bool) {
let reg = match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_oe_read() },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_oe_read() },
};
let reg = if oe { reg | SDA_MASK } else { reg & !SDA_MASK };
match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_oe_write(reg) },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_oe_write(reg) },
}
}
fn sda_o(dcxo: DCXO, o: bool) {
let reg = match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_out_read() },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_out_read() },
};
let reg = if o { reg | SDA_MASK } else { reg & !SDA_MASK };
match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_out_write(reg) },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_out_write(reg) },
}
}
fn scl_oe(dcxo: DCXO, oe: bool) {
let reg = match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_oe_read() },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_oe_read() },
};
let reg = if oe { reg | SCL_MASK } else { reg & !SCL_MASK };
match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_oe_write(reg) },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_oe_write(reg) },
}
}
fn scl_o(dcxo: DCXO, o: bool) {
let reg = match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_out_read() },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_out_read() },
};
let reg = if o { reg | SCL_MASK } else { reg & !SCL_MASK };
match dcxo {
DCXO::Main => unsafe { csr::main_dcxo::gpio_out_write(reg) },
#[cfg(has_wrpll)]
DCXO::Helper => unsafe { csr::helper_dcxo::gpio_out_write(reg) },
}
}
pub fn init(dcxo: DCXO, timer: &mut GlobalTimer) -> Result<(), &'static str> {
// Set SCL as output, and high level
scl_o(dcxo, true);
scl_oe(dcxo, true);
// Prepare a zero level on SDA so that sda_oe pulls it down
sda_o(dcxo, false);
// Release SDA
sda_oe(dcxo, false);
// Check the I2C bus is ready
half_period(timer);
half_period(timer);
if !sda_i(dcxo) {
// Try toggling SCL a few times
for _bit in 0..8 {
scl_o(dcxo, false);
half_period(timer);
scl_o(dcxo, true);
half_period(timer);
}
}
if !sda_i(dcxo) {
return Err("SDA is stuck low and doesn't get unstuck");
}
Ok(())
}
pub fn start(dcxo: DCXO, timer: &mut GlobalTimer) {
// Set SCL high then SDA low
scl_o(dcxo, true);
half_period(timer);
sda_oe(dcxo, true);
half_period(timer);
}
pub fn stop(dcxo: DCXO, timer: &mut GlobalTimer) {
// First, make sure SCL is low, so that the target releases the SDA line
scl_o(dcxo, false);
half_period(timer);
// Set SCL high then SDA high
sda_oe(dcxo, true);
scl_o(dcxo, true);
half_period(timer);
sda_oe(dcxo, false);
half_period(timer);
}
pub fn write(dcxo: DCXO, data: u8, timer: &mut GlobalTimer) -> bool {
// MSB first
for bit in (0..8).rev() {
// Set SCL low and set our bit on SDA
scl_o(dcxo, false);
sda_oe(dcxo, data & (1 << bit) == 0);
half_period(timer);
// Set SCL high ; data is shifted on the rising edge of SCL
scl_o(dcxo, true);
half_period(timer);
}
// Check ack
// Set SCL low, then release SDA so that the I2C target can respond
scl_o(dcxo, false);
half_period(timer);
sda_oe(dcxo, false);
// Set SCL high and check for ack
scl_o(dcxo, true);
half_period(timer);
// returns true if acked (I2C target pulled SDA low)
!sda_i(dcxo)
}
pub fn read(dcxo: DCXO, ack: bool, timer: &mut GlobalTimer) -> u8 {
// Set SCL low first, otherwise setting SDA as input may cause a transition
// on SDA with SCL high which will be interpreted as START/STOP condition.
scl_o(dcxo, false);
half_period(timer); // make sure SCL has settled low
sda_oe(dcxo, false);
let mut data: u8 = 0;
// MSB first
for bit in (0..8).rev() {
scl_o(dcxo, false);
half_period(timer);
// Set SCL high and shift data
scl_o(dcxo, true);
half_period(timer);
if sda_i(dcxo) {
data |= 1 << bit
}
}
// Send ack
// Set SCL low and pull SDA low when acking
scl_o(dcxo, false);
if ack {
sda_oe(dcxo, true)
}
half_period(timer);
// then set SCL high
scl_o(dcxo, true);
half_period(timer);
data
}
}
fn write(dcxo: i2c::DCXO, reg: u8, val: u8, timer: &mut GlobalTimer) -> Result<(), &'static str> {
i2c::start(dcxo, timer);
if !i2c::write(dcxo, ADDRESS << 1, timer) {
return Err("Si549 failed to ack write address");
}
if !i2c::write(dcxo, reg, timer) {
return Err("Si549 failed to ack register");
}
if !i2c::write(dcxo, val, timer) {
return Err("Si549 failed to ack value");
}
i2c::stop(dcxo, timer);
Ok(())
}
fn read(dcxo: i2c::DCXO, reg: u8, timer: &mut GlobalTimer) -> Result<u8, &'static str> {
i2c::start(dcxo, timer);
if !i2c::write(dcxo, ADDRESS << 1, timer) {
return Err("Si549 failed to ack write address");
}
if !i2c::write(dcxo, reg, timer) {
return Err("Si549 failed to ack register");
}
i2c::stop(dcxo, timer);
i2c::start(dcxo, timer);
if !i2c::write(dcxo, (ADDRESS << 1) | 1, timer) {
return Err("Si549 failed to ack read address");
}
let val = i2c::read(dcxo, false, timer);
i2c::stop(dcxo, timer);
Ok(val)
}
fn setup(dcxo: i2c::DCXO, hsdiv: u16, lsdiv: u8, fbdiv: u64, timer: &mut GlobalTimer) -> Result<(), &'static str> {
i2c::init(dcxo, timer)?;
write(dcxo, 255, 0x00, timer)?; // PAGE
write(dcxo, 69, 0x00, timer)?; // Disable FCAL override.
write(dcxo, 17, 0x00, timer)?; // Synchronously disable output
// The Si549 has no ID register, so we check that it responds correctly
// by writing values to a RAM-like register and reading them back.
for test_value in 0..255 {
write(dcxo, 23, test_value, timer)?;
let readback = read(dcxo, 23, timer)?;
if readback != test_value {
return Err("Si549 detection failed");
}
}
write(dcxo, 23, hsdiv as u8, timer)?;
write(dcxo, 24, (hsdiv >> 8) as u8 | (lsdiv << 4), timer)?;
write(dcxo, 26, fbdiv as u8, timer)?;
write(dcxo, 27, (fbdiv >> 8) as u8, timer)?;
write(dcxo, 28, (fbdiv >> 16) as u8, timer)?;
write(dcxo, 29, (fbdiv >> 24) as u8, timer)?;
write(dcxo, 30, (fbdiv >> 32) as u8, timer)?;
write(dcxo, 31, (fbdiv >> 40) as u8, timer)?;
write(dcxo, 7, 0x08, timer)?; // Start FCAL
timer.delay_us(30_000); // Internal FCAL VCO calibration
write(dcxo, 17, 0x01, timer)?; // Synchronously enable output
Ok(())
}
pub fn main_setup(timer: &mut GlobalTimer) -> Result<(), &'static str> {
unsafe {
csr::main_dcxo::bitbang_enable_write(1);
csr::main_dcxo::i2c_address_write(ADDRESS);
}
#[cfg(rtio_frequency = "125.0")]
let (m_hsdiv, m_lsdiv, m_fbdiv) = (0x058, 0, 0x04815791F25);
setup(i2c::DCXO::Main, m_hsdiv, m_lsdiv, m_fbdiv, timer)?;
// Si549 maximum settling time for large frequency change.
timer.delay_us(40_000);
unsafe {
csr::main_dcxo::bitbang_enable_write(0);
}
info!("Main Si549 started");
Ok(())
}
#[cfg(has_wrpll)]
pub mod wrpll {
use libboard_zynq::gic;
use libcortex_a9::mutex::Mutex;
use super::*;
const IRQ_ID: [u8; 2] = [61, 62];
const TIMER_WIDTH: u32 = 24;
const COUNTER_DIV: u32 = 2;
const ADPLL_MAX: i32 = (950.0 / 0.0001164) as i32;
static BASE_ADPLL: Mutex<i32> = Mutex::new(0);
static H_INTEGRATOR: Mutex<i32> = Mutex::new(0);
static M_INTEGRATOR: Mutex<i32> = Mutex::new(0);
#[derive(Clone, Copy)]
pub enum IRQ {
GTXTag,
MainTag,
}
mod tag_collector {
use super::*;
const BEATING_PERIOD: i32 = 0x4000;
const BEATING_HALFPERIOD: i32 = 0x2000;
// for helper PLL
static LAST_GTX_TAG: Mutex<u32> = Mutex::new(0);
static FIRST_GTX_INTERRUPT: Mutex<bool> = Mutex::new(false);
static PERIOD_DET_READY: Mutex<bool> = Mutex::new(false);
// for main PLL
static GTX_TAG: Mutex<u32> = Mutex::new(0);
static GTX_TAG_READY: Mutex<bool> = Mutex::new(false);
static MAIN_TAG: Mutex<u32> = Mutex::new(0);
static MAIN_TAG_READY: Mutex<bool> = Mutex::new(false);
pub fn reset() {
clear_period_det_ready();
clear_phase_det_ready();
*LAST_GTX_TAG.lock() = 0;
*FIRST_GTX_INTERRUPT.lock() = true;
*GTX_TAG.lock() = 0;
*MAIN_TAG.lock() = 0;
}
pub fn clear_period_det_ready() {
*PERIOD_DET_READY.lock() = false;
}
pub fn clear_phase_det_ready() {
*GTX_TAG_READY.lock() = false;
*MAIN_TAG_READY.lock() = false;
}
pub fn collect_tags(interrupt: IRQ) {
match interrupt {
IRQ::GTXTag => {
let mut gtx_tag_lock = GTX_TAG.lock();
if !(*FIRST_GTX_INTERRUPT.lock()) {
*LAST_GTX_TAG.lock() = *gtx_tag_lock;
}
*gtx_tag_lock = unsafe { csr::wrpll::gtx_tag_read() };
*FIRST_GTX_INTERRUPT.lock() = false;
*GTX_TAG_READY.lock() = true;
}
IRQ::MainTag => {
*MAIN_TAG.lock() = unsafe { csr::wrpll::main_tag_read() };
*MAIN_TAG_READY.lock() = true;
}
}
}
pub fn period_det_ready() -> bool {
*PERIOD_DET_READY.lock()
}
pub fn phase_det_ready() -> bool {
*GTX_TAG_READY.lock() && *MAIN_TAG_READY.lock()
}
pub fn get_period_error() -> i32 {
// overflowing_sub can calculate the correct beating period when GTX_TAG roll over
BEATING_PERIOD - ((*GTX_TAG.lock()).overflowing_sub(*LAST_GTX_TAG.lock()).0) as i32
}
pub fn get_phase_error() -> i32 {
// unwrap tag difference
let mut phase_error = (*MAIN_TAG.lock())
.overflowing_sub(*GTX_TAG.lock())
.0
.rem_euclid(BEATING_PERIOD as u32) as i32;
// mapping tags from [0, 2π] -> [-π, π]
if phase_error > BEATING_HALFPERIOD {
phase_error -= BEATING_PERIOD
}
phase_error
}
}
pub fn helper_setup(timer: &mut GlobalTimer) -> Result<(), &'static str> {
unsafe {
csr::wrpll::helper_reset_write(1);
csr::helper_dcxo::bitbang_enable_write(1);
csr::helper_dcxo::i2c_address_write(ADDRESS);
}
#[cfg(rtio_frequency = "125.0")]
let (h_hsdiv, h_lsdiv, h_fbdiv) = (0x058, 0, 0x0481458C94D); // 125Mhz*16383/16384
setup(i2c::DCXO::Helper, h_hsdiv, h_lsdiv, h_fbdiv, timer)?;
// Si549 maximum settling time for large frequency change.
timer.delay_us(40_000);
unsafe {
csr::wrpll::helper_reset_write(0);
csr::helper_dcxo::bitbang_enable_write(0);
}
info!("Helper Si549 started");
Ok(())
}
pub fn interrupt_setup(interrupt_controller: &mut gic::InterruptController) {
for id in IRQ_ID.iter() {
// setup shared peripheral interrupts (SPI)
interrupt_controller.enable(
gic::InterruptId(*id),
gic::CPUCore::Core0,
gic::InterruptSensitivity::Edge,
0,
);
}
}
fn set_irq(en: bool) {
let val = if en { 1 } else { 0 };
unsafe {
csr::wrpll::gtx_tag_ev_enable_write(val);
csr::wrpll::main_tag_ev_enable_write(val);
}
}
/// set adpll using gateware i2c
/// Note: disable main/helper i2c bitbang before using this function
fn set_adpll(dcxo: i2c::DCXO, adpll: i32) -> Result<(), &'static str> {
if adpll.abs() > ADPLL_MAX {
return Err("adpll is too large");
}
match dcxo {
i2c::DCXO::Main => unsafe {
if csr::main_dcxo::bitbang_enable_read() == 1 {
return Err("Main si549 bitbang mode is active when using gateware i2c");
}
while csr::main_dcxo::adpll_busy_read() == 1 {}
csr::main_dcxo::i2c_address_write(ADDRESS);
csr::main_dcxo::adpll_write(adpll as u32);
csr::main_dcxo::adpll_stb_write(1);
csr::main_dcxo::adpll_stb_write(0);
if csr::main_dcxo::nack_read() == 1 {
return Err("Main si549 failed to ack adpll write");
}
},
#[cfg(has_wrpll)]
i2c::DCXO::Helper => unsafe {
if csr::helper_dcxo::bitbang_enable_read() == 1 {
return Err("Helper si549 bitbang mode is active when using gateware i2c");
}
while csr::helper_dcxo::adpll_busy_read() == 1 {}
csr::helper_dcxo::i2c_address_write(ADDRESS);
csr::helper_dcxo::adpll_write(adpll as u32);
csr::helper_dcxo::adpll_stb_write(1);
csr::helper_dcxo::adpll_stb_write(0);
if csr::helper_dcxo::nack_read() == 1 {
return Err("Helper si549 failed to ack adpll write");
}
},
};
Ok(())
}
fn set_base_adpll(timer: &mut GlobalTimer) -> Result<(), &'static str> {
let count2adpll =
|error: i32| (((error) as f64 * 1e6) / (0.0001164 * (1 << (TIMER_WIDTH - COUNTER_DIV)) as f64)) as i32;
let (gtx_count, main_count, _helper_count) = get_freq_counts(timer);
let mut base_adpll_lock = BASE_ADPLL.lock();
*base_adpll_lock = count2adpll(gtx_count as i32 - main_count as i32);
set_adpll(i2c::DCXO::Main, *base_adpll_lock)?;
set_adpll(i2c::DCXO::Helper, *base_adpll_lock)?;
Ok(())
}
fn get_freq_counts(timer: &mut GlobalTimer) -> (u32, u32, u32) {
unsafe {
csr::wrpll::frequency_counter_update_en_write(1);
timer.delay_us(150_000); // 8ns << TIMER_WIDTH
csr::wrpll::frequency_counter_update_en_write(0);
let gtx = csr::wrpll::frequency_counter_counter_gtx0_rtio_rx_read();
let main = csr::wrpll::frequency_counter_counter_sys_read();
let helper = csr::wrpll::frequency_counter_counter_helper_read();
(gtx, main, helper)
}
}
fn reset_plls() -> Result<(), &'static str> {
*H_INTEGRATOR.lock() = 0;
*M_INTEGRATOR.lock() = 0;
set_adpll(i2c::DCXO::Main, 0)?;
set_adpll(i2c::DCXO::Helper, 0)?;
Ok(())
}
fn clear_pending(interrupt: IRQ) {
match interrupt {
IRQ::GTXTag => unsafe { csr::wrpll::gtx_tag_ev_pending_write(1) },
IRQ::MainTag => unsafe { csr::wrpll::main_tag_ev_pending_write(1) },
}
}
pub fn interrupt_handler(interrupt: IRQ) {
tag_collector::collect_tags(interrupt);
if tag_collector::period_det_ready() {
helper_pll().expect("failed to run helper DCXO PLL");
tag_collector::clear_period_det_ready();
}
if tag_collector::phase_det_ready() {
main_pll().expect("failed to run main DCXO PLL");
tag_collector::clear_phase_det_ready();
}
clear_pending(interrupt);
}
pub fn helper_pll() -> Result<(), &'static str> {
const H_KP: i32 = 2;
const H_KI: f32 = 0.5;
let period_err = tag_collector::get_period_error();
let mut integrator_lock = H_INTEGRATOR.lock();
*integrator_lock += (period_err as f32 * H_KI) as i32;
let mut h_adpll = *BASE_ADPLL.lock() + period_err * H_KP + *integrator_lock;
h_adpll = h_adpll.clamp(-ADPLL_MAX, ADPLL_MAX);
set_adpll(i2c::DCXO::Helper, h_adpll)?;
Ok(())
}
pub fn main_pll() -> Result<(), &'static str> {
const M_KP: i32 = 12;
const M_KI: i32 = 2;
let phase_err = tag_collector::get_phase_error();
let mut integrator_lock = M_INTEGRATOR.lock();
*integrator_lock += phase_err * M_KI;
let mut m_adpll = *BASE_ADPLL.lock() + phase_err * M_KP + *integrator_lock;
m_adpll = m_adpll.clamp(-ADPLL_MAX, ADPLL_MAX);
set_adpll(i2c::DCXO::Main, m_adpll)?;
Ok(())
}
pub fn select_recovered_clock(rc: bool, timer: &mut GlobalTimer) {
set_irq(false);
if rc {
tag_collector::reset();
reset_plls().expect("failed to reset main and helper PLL");
info!("warming up GTX CDR...");
// gtx need a couple seconds for freq counter to read it properly
timer.delay_us(20_000_000);
set_base_adpll(timer).expect("failed to set base adpll");
// clear gateware pending flag
clear_pending(IRQ::GTXTag);
clear_pending(IRQ::MainTag);
set_irq(true);
info!("WRPLL interrupt enabled");
}
}
}