use embedded_hal::prelude::_embedded_hal_blocking_delay_DelayUs; use libboard_zynq::timer::GlobalTimer; use log::info; use crate::pl::csr; #[cfg(feature = "target_kasli_soc")] const ADDRESS: u8 = 0x67; const ADPLL_MAX: i32 = (950.0 / 0.0001164) as i32; pub struct DividerConfig { pub hsdiv: u16, pub lsdiv: u8, pub fbdiv: u64, } pub struct FrequencySetting { pub main: DividerConfig, pub helper: DividerConfig, } mod i2c { use super::*; #[derive(Clone, Copy)] pub enum DCXO { Main, Helper, } fn half_period(timer: &mut GlobalTimer) { timer.delay_us(1) } fn sda_i(dcxo: DCXO) -> bool { match dcxo { DCXO::Main => unsafe { csr::wrpll::main_dcxo_sda_in_read() == 1 }, DCXO::Helper => unsafe { csr::wrpll::helper_dcxo_sda_in_read() == 1 }, } } fn sda_oe(dcxo: DCXO, oe: bool) { let val = if oe { 1 } else { 0 }; match dcxo { DCXO::Main => unsafe { csr::wrpll::main_dcxo_sda_oe_write(val) }, DCXO::Helper => unsafe { csr::wrpll::helper_dcxo_sda_oe_write(val) }, }; } fn sda_o(dcxo: DCXO, o: bool) { let val = if o { 1 } else { 0 }; match dcxo { DCXO::Main => unsafe { csr::wrpll::main_dcxo_sda_out_write(val) }, DCXO::Helper => unsafe { csr::wrpll::helper_dcxo_sda_out_write(val) }, }; } fn scl_oe(dcxo: DCXO, oe: bool) { let val = if oe { 1 } else { 0 }; match dcxo { DCXO::Main => unsafe { csr::wrpll::main_dcxo_scl_oe_write(val) }, DCXO::Helper => unsafe { csr::wrpll::helper_dcxo_scl_oe_write(val) }, }; } fn scl_o(dcxo: DCXO, o: bool) { let val = if o { 1 } else { 0 }; match dcxo { DCXO::Main => unsafe { csr::wrpll::main_dcxo_scl_out_write(val) }, DCXO::Helper => unsafe { csr::wrpll::helper_dcxo_scl_out_write(val) }, }; } pub fn init(dcxo: DCXO, timer: &mut GlobalTimer) -> Result<(), &'static str> { // Set SCL as output, and high level scl_o(dcxo, true); scl_oe(dcxo, true); // Prepare a zero level on SDA so that sda_oe pulls it down sda_o(dcxo, false); // Release SDA sda_oe(dcxo, false); // Check the I2C bus is ready half_period(timer); half_period(timer); if !sda_i(dcxo) { // Try toggling SCL a few times for _bit in 0..8 { scl_o(dcxo, false); half_period(timer); scl_o(dcxo, true); half_period(timer); } } if !sda_i(dcxo) { return Err("SDA is stuck low and doesn't get unstuck"); } Ok(()) } pub fn start(dcxo: DCXO, timer: &mut GlobalTimer) { // Set SCL high then SDA low scl_o(dcxo, true); half_period(timer); sda_oe(dcxo, true); half_period(timer); } pub fn stop(dcxo: DCXO, timer: &mut GlobalTimer) { // First, make sure SCL is low, so that the target releases the SDA line scl_o(dcxo, false); half_period(timer); // Set SCL high then SDA high sda_oe(dcxo, true); scl_o(dcxo, true); half_period(timer); sda_oe(dcxo, false); half_period(timer); } pub fn write(dcxo: DCXO, data: u8, timer: &mut GlobalTimer) -> bool { // MSB first for bit in (0..8).rev() { // Set SCL low and set our bit on SDA scl_o(dcxo, false); sda_oe(dcxo, data & (1 << bit) == 0); half_period(timer); // Set SCL high ; data is shifted on the rising edge of SCL scl_o(dcxo, true); half_period(timer); } // Check ack // Set SCL low, then release SDA so that the I2C target can respond scl_o(dcxo, false); half_period(timer); sda_oe(dcxo, false); // Set SCL high and check for ack scl_o(dcxo, true); half_period(timer); // returns true if acked (I2C target pulled SDA low) !sda_i(dcxo) } pub fn read(dcxo: DCXO, ack: bool, timer: &mut GlobalTimer) -> u8 { // Set SCL low first, otherwise setting SDA as input may cause a transition // on SDA with SCL high which will be interpreted as START/STOP condition. scl_o(dcxo, false); half_period(timer); // make sure SCL has settled low sda_oe(dcxo, false); let mut data: u8 = 0; // MSB first for bit in (0..8).rev() { scl_o(dcxo, false); half_period(timer); // Set SCL high and shift data scl_o(dcxo, true); half_period(timer); if sda_i(dcxo) { data |= 1 << bit } } // Send ack // Set SCL low and pull SDA low when acking scl_o(dcxo, false); if ack { sda_oe(dcxo, true) } half_period(timer); // then set SCL high scl_o(dcxo, true); half_period(timer); data } } fn write(dcxo: i2c::DCXO, reg: u8, val: u8, timer: &mut GlobalTimer) -> Result<(), &'static str> { i2c::start(dcxo, timer); if !i2c::write(dcxo, ADDRESS << 1, timer) { return Err("Si549 failed to ack write address"); } if !i2c::write(dcxo, reg, timer) { return Err("Si549 failed to ack register"); } if !i2c::write(dcxo, val, timer) { return Err("Si549 failed to ack value"); } i2c::stop(dcxo, timer); Ok(()) } fn read(dcxo: i2c::DCXO, reg: u8, timer: &mut GlobalTimer) -> Result { i2c::start(dcxo, timer); if !i2c::write(dcxo, ADDRESS << 1, timer) { return Err("Si549 failed to ack write address"); } if !i2c::write(dcxo, reg, timer) { return Err("Si549 failed to ack register"); } i2c::stop(dcxo, timer); i2c::start(dcxo, timer); if !i2c::write(dcxo, (ADDRESS << 1) | 1, timer) { return Err("Si549 failed to ack read address"); } let val = i2c::read(dcxo, false, timer); i2c::stop(dcxo, timer); Ok(val) } fn setup(dcxo: i2c::DCXO, config: &DividerConfig, timer: &mut GlobalTimer) -> Result<(), &'static str> { i2c::init(dcxo, timer)?; write(dcxo, 255, 0x00, timer)?; // PAGE write(dcxo, 69, 0x00, timer)?; // Disable FCAL override. write(dcxo, 17, 0x00, timer)?; // Synchronously disable output // The Si549 has no ID register, so we check that it responds correctly // by writing values to a RAM-like register and reading them back. for test_value in 0..255 { write(dcxo, 23, test_value, timer)?; let readback = read(dcxo, 23, timer)?; if readback != test_value { return Err("Si549 detection failed"); } } write(dcxo, 23, config.hsdiv as u8, timer)?; write(dcxo, 24, (config.hsdiv >> 8) as u8 | (config.lsdiv << 4), timer)?; write(dcxo, 26, config.fbdiv as u8, timer)?; write(dcxo, 27, (config.fbdiv >> 8) as u8, timer)?; write(dcxo, 28, (config.fbdiv >> 16) as u8, timer)?; write(dcxo, 29, (config.fbdiv >> 24) as u8, timer)?; write(dcxo, 30, (config.fbdiv >> 32) as u8, timer)?; write(dcxo, 31, (config.fbdiv >> 40) as u8, timer)?; write(dcxo, 7, 0x08, timer)?; // Start FCAL timer.delay_us(30_000); // Internal FCAL VCO calibration write(dcxo, 17, 0x01, timer)?; // Synchronously enable output Ok(()) } pub fn main_setup(timer: &mut GlobalTimer, settings: &FrequencySetting) -> Result<(), &'static str> { unsafe { csr::wrpll::main_dcxo_bitbang_enable_write(1); csr::wrpll::main_dcxo_i2c_address_write(ADDRESS); } setup(i2c::DCXO::Main, &settings.main, timer)?; // Si549 maximum settling time for large frequency change. timer.delay_us(40_000); unsafe { csr::wrpll::main_dcxo_bitbang_enable_write(0); } info!("Main Si549 started"); Ok(()) } pub fn helper_setup(timer: &mut GlobalTimer, settings: &FrequencySetting) -> Result<(), &'static str> { unsafe { csr::wrpll::helper_reset_write(1); csr::wrpll::helper_dcxo_bitbang_enable_write(1); csr::wrpll::helper_dcxo_i2c_address_write(ADDRESS); } setup(i2c::DCXO::Helper, &settings.helper, timer)?; // Si549 maximum settling time for large frequency change. timer.delay_us(40_000); unsafe { csr::wrpll::helper_reset_write(0); csr::wrpll::helper_dcxo_bitbang_enable_write(0); } info!("Helper Si549 started"); Ok(()) } /// set adpll using gateware i2c /// Note: disable main/helper i2c bitbang before using this function fn set_adpll(dcxo: i2c::DCXO, adpll: i32) -> Result<(), &'static str> { if adpll.abs() > ADPLL_MAX { return Err("adpll is too large"); } match dcxo { i2c::DCXO::Main => unsafe { if csr::wrpll::main_dcxo_bitbang_enable_read() == 1 { return Err("Main si549 bitbang mode is active when using gateware i2c"); } while csr::wrpll::main_dcxo_adpll_busy_read() == 1 {} csr::wrpll::main_dcxo_i2c_address_write(ADDRESS); csr::wrpll::main_dcxo_adpll_write(adpll as u32); csr::wrpll::main_dcxo_adpll_stb_write(1); csr::wrpll::main_dcxo_adpll_stb_write(0); if csr::wrpll::main_dcxo_nack_read() == 1 { return Err("Main si549 failed to ack adpll write"); } }, i2c::DCXO::Helper => unsafe { if csr::wrpll::helper_dcxo_bitbang_enable_read() == 1 { return Err("Helper si549 bitbang mode is active when using gateware i2c"); } while csr::wrpll::helper_dcxo_adpll_busy_read() == 1 {} csr::wrpll::helper_dcxo_i2c_address_write(ADDRESS); csr::wrpll::helper_dcxo_adpll_write(adpll as u32); csr::wrpll::helper_dcxo_adpll_stb_write(1); csr::wrpll::helper_dcxo_adpll_stb_write(0); if csr::wrpll::helper_dcxo_nack_read() == 1 { return Err("Helper si549 failed to ack adpll write"); } }, }; Ok(()) }