#![no_std] #![no_main] #![feature(never_type, panic_info_message, asm, naked_functions)] #![feature(alloc_error_handler)] #[macro_use] extern crate log; extern crate embedded_hal; extern crate libboard_zynq; extern crate libboard_artiq; extern crate libsupport_zynq; extern crate libcortex_a9; extern crate libregister; extern crate unwind; extern crate alloc; use libboard_zynq::{i2c::I2c, timer::GlobalTimer, time::Milliseconds, print, println, mpcore, gic, stdio}; use libsupport_zynq::ram; #[cfg(has_si5324)] use libboard_artiq::si5324; use libboard_artiq::{pl::csr, drtio_routing, drtioaux, logger, identifier_read, init_gateware}; use libcortex_a9::{spin_lock_yield, interrupt_handler, regs::{MPIDR, SP}, notify_spin_lock, asm, l2c::enable_l2_cache}; use libregister::{RegisterW, RegisterR}; use embedded_hal::blocking::delay::DelayUs; use core::sync::atomic::{AtomicBool, Ordering}; mod repeater; fn drtiosat_reset(reset: bool) { unsafe { csr::drtiosat::reset_write(if reset { 1 } else { 0 }); } } fn drtiosat_reset_phy(reset: bool) { unsafe { csr::drtiosat::reset_phy_write(if reset { 1 } else { 0 }); } } fn drtiosat_link_rx_up() -> bool { unsafe { csr::drtiosat::rx_up_read() == 1 } } fn drtiosat_tsc_loaded() -> bool { unsafe { let tsc_loaded = csr::drtiosat::tsc_loaded_read() == 1; if tsc_loaded { csr::drtiosat::tsc_loaded_write(1); } tsc_loaded } } #[cfg(has_drtio_routing)] macro_rules! forward { ($routing_table:expr, $destination:expr, $rank:expr, $repeaters:expr, $packet:expr, $timer:expr) => {{ let hop = $routing_table.0[$destination as usize][$rank as usize]; if hop != 0 { let repno = (hop - 1) as usize; if repno < $repeaters.len() { return $repeaters[repno].aux_forward($packet, $timer); } else { return Err(drtioaux::Error::RoutingError); } } }} } #[cfg(not(has_drtio_routing))] macro_rules! forward { ($routing_table:expr, $destination:expr, $rank:expr, $repeaters:expr, $packet:expr, $timer:expr) => {} } fn process_aux_packet(_repeaters: &mut [repeater::Repeater], _routing_table: &mut drtio_routing::RoutingTable, _rank: &mut u8, packet: drtioaux::Packet, timer: &mut GlobalTimer, i2c: &mut I2c) -> Result<(), drtioaux::Error> { // In the code below, *_chan_sel_write takes an u8 if there are fewer than 256 channels, // and u16 otherwise; hence the `as _` conversion. match packet { drtioaux::Packet::EchoRequest => drtioaux::send(0, &drtioaux::Packet::EchoReply), drtioaux::Packet::ResetRequest => { info!("resetting RTIO"); drtiosat_reset(true); timer.delay_us(100); drtiosat_reset(false); for rep in _repeaters.iter() { if let Err(e) = rep.rtio_reset(timer) { error!("failed to issue RTIO reset ({:?})", e); } } drtioaux::send(0, &drtioaux::Packet::ResetAck) }, drtioaux::Packet::DestinationStatusRequest { destination: _destination } => { #[cfg(has_drtio_routing)] let hop = _routing_table.0[_destination as usize][*_rank as usize]; #[cfg(not(has_drtio_routing))] let hop = 0; if hop == 0 { let errors; unsafe { errors = csr::drtiosat::rtio_error_read(); } if errors & 1 != 0 { let channel; unsafe { channel = csr::drtiosat::sequence_error_channel_read(); csr::drtiosat::rtio_error_write(1); } drtioaux::send(0, &drtioaux::Packet::DestinationSequenceErrorReply { channel })?; } else if errors & 2 != 0 { let channel; unsafe { channel = csr::drtiosat::collision_channel_read(); csr::drtiosat::rtio_error_write(2); } drtioaux::send(0, &drtioaux::Packet::DestinationCollisionReply { channel })?; } else if errors & 4 != 0 { let channel; unsafe { channel = csr::drtiosat::busy_channel_read(); csr::drtiosat::rtio_error_write(4); } drtioaux::send(0, &drtioaux::Packet::DestinationBusyReply { channel })?; } else { drtioaux::send(0, &drtioaux::Packet::DestinationOkReply)?; } } #[cfg(has_drtio_routing)] { if hop != 0 { let hop = hop as usize; if hop <= csr::DRTIOREP.len() { let repno = hop - 1; match _repeaters[repno].aux_forward(&drtioaux::Packet::DestinationStatusRequest { destination: _destination }, timer) { Ok(()) => (), Err(drtioaux::Error::LinkDown) => drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?, Err(e) => { drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?; error!("aux error when handling destination status request: {:?}", e); }, } } else { drtioaux::send(0, &drtioaux::Packet::DestinationDownReply)?; } } } Ok(()) } #[cfg(has_drtio_routing)] drtioaux::Packet::RoutingSetPath { destination, hops } => { _routing_table.0[destination as usize] = hops; for rep in _repeaters.iter() { if let Err(e) = rep.set_path(destination, &hops, timer) { error!("failed to set path ({:?})", e); } } drtioaux::send(0, &drtioaux::Packet::RoutingAck) } #[cfg(has_drtio_routing)] drtioaux::Packet::RoutingSetRank { rank } => { *_rank = rank; drtio_routing::interconnect_enable_all(_routing_table, rank); let rep_rank = rank + 1; for rep in _repeaters.iter() { if let Err(e) = rep.set_rank(rep_rank, timer) { error!("failed to set rank ({:?})", e); } } info!("rank: {}", rank); info!("routing table: {}", _routing_table); drtioaux::send(0, &drtioaux::Packet::RoutingAck) } #[cfg(not(has_drtio_routing))] drtioaux::Packet::RoutingSetPath { destination: _, hops: _ } => { drtioaux::send(0, &drtioaux::Packet::RoutingAck) } #[cfg(not(has_drtio_routing))] drtioaux::Packet::RoutingSetRank { rank: _ } => { drtioaux::send(0, &drtioaux::Packet::RoutingAck) } drtioaux::Packet::MonitorRequest { destination: _destination, channel: _channel, probe: _probe } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let value; #[cfg(has_rtio_moninj)] unsafe { csr::rtio_moninj::mon_chan_sel_write(channel as _); csr::rtio_moninj::mon_probe_sel_write(probe); csr::rtio_moninj::mon_value_update_write(1); value = csr::rtio_moninj::mon_value_read(); } #[cfg(not(has_rtio_moninj))] { value = 0; } let reply = drtioaux::Packet::MonitorReply { value: value as u32 }; drtioaux::send(0, &reply) }, drtioaux::Packet::InjectionRequest { destination: _destination, channel: _channel, overrd: _overrd, value: _value } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); #[cfg(has_rtio_moninj)] unsafe { csr::rtio_moninj::inj_chan_sel_write(channel as _); csr::rtio_moninj::inj_override_sel_write(overrd); csr::rtio_moninj::inj_value_write(value); } Ok(()) }, drtioaux::Packet::InjectionStatusRequest { destination: _destination, channel: _channel, overrd: _overrd } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let value; #[cfg(has_rtio_moninj)] unsafe { csr::rtio_moninj::inj_chan_sel_write(channel as _); csr::rtio_moninj::inj_override_sel_write(overrd); value = csr::rtio_moninj::inj_value_read(); } #[cfg(not(has_rtio_moninj))] { value = 0; } drtioaux::send(0, &drtioaux::Packet::InjectionStatusReply { value: value }) }, drtioaux::Packet::I2cStartRequest { destination: _destination, busno: _busno } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let succeeded = i2c.start().is_ok(); drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded }) } drtioaux::Packet::I2cRestartRequest { destination: _destination, busno: _busno } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let succeeded = i2c.restart().is_ok(); drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded }) } drtioaux::Packet::I2cStopRequest { destination: _destination, busno: _busno } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let succeeded = i2c.stop().is_ok(); drtioaux::send(0, &drtioaux::Packet::I2cBasicReply { succeeded: succeeded }) } drtioaux::Packet::I2cWriteRequest { destination: _destination, busno: _busno, data } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); match i2c.write(data) { Ok(ack) => drtioaux::send(0, &drtioaux::Packet::I2cWriteReply { succeeded: true, ack: ack }), Err(_) => drtioaux::send(0, &drtioaux::Packet::I2cWriteReply { succeeded: false, ack: false }) } } drtioaux::Packet::I2cReadRequest { destination: _destination, busno: _busno, ack } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); match i2c.read(ack) { Ok(data) => drtioaux::send(0, &drtioaux::Packet::I2cReadReply { succeeded: true, data: data }), Err(_) => drtioaux::send(0, &drtioaux::Packet::I2cReadReply { succeeded: false, data: 0xff }) } } drtioaux::Packet::SpiSetConfigRequest { destination: _destination, busno: _busno, flags: _flags, length: _length, div: _div, cs: _cs } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); // todo: reimplement when/if SPI is available //let succeeded = spi::set_config(busno, flags, length, div, cs).is_ok(); drtioaux::send(0, &drtioaux::Packet::SpiBasicReply { succeeded: false }) }, drtioaux::Packet::SpiWriteRequest { destination: _destination, busno: _busno, data: _data } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); // todo: reimplement when/if SPI is available //let succeeded = spi::write(busno, data).is_ok(); drtioaux::send(0, &drtioaux::Packet::SpiBasicReply { succeeded: false }) } drtioaux::Packet::SpiReadRequest { destination: _destination, busno: _busno } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); // todo: reimplement when/if SPI is available // match spi::read(busno) { // Ok(data) => drtioaux::send(0, // &drtioaux::Packet::SpiReadReply { succeeded: true, data: data }), // Err(_) => drtioaux::send(0, // &drtioaux::Packet::SpiReadReply { succeeded: false, data: 0 }) // } drtioaux::send(0, &drtioaux::Packet::SpiReadReply { succeeded: false, data: 0 }) } drtioaux::Packet::JdacBasicRequest { destination: _destination, dacno: _dacno, reqno: _reqno, param: _param } => { forward!(_routing_table, _destination, *_rank, _repeaters, &packet, timer); let (succeeded, retval) = (false, 0); drtioaux::send(0, &drtioaux::Packet::JdacBasicReply { succeeded: succeeded, retval: retval }) } _ => { warn!("received unexpected aux packet"); Ok(()) } } } fn process_aux_packets(repeaters: &mut [repeater::Repeater], routing_table: &mut drtio_routing::RoutingTable, rank: &mut u8, timer: &mut GlobalTimer, i2c: &mut I2c) { let result = drtioaux::recv(0).and_then(|packet| { if let Some(packet) = packet { process_aux_packet(repeaters, routing_table, rank, packet, timer, i2c) } else { Ok(()) } }); match result { Ok(()) => (), Err(e) => warn!("aux packet error ({:?})", e) } } fn drtiosat_process_errors() { let errors; unsafe { errors = csr::drtiosat::protocol_error_read(); } if errors & 1 != 0 { error!("received packet of an unknown type"); } if errors & 2 != 0 { error!("received truncated packet"); } if errors & 4 != 0 { let destination; unsafe { destination = csr::drtiosat::buffer_space_timeout_dest_read(); } error!("timeout attempting to get buffer space from CRI, destination=0x{:02x}", destination) } if errors & 8 != 0 { let channel; let timestamp_event; let timestamp_counter; unsafe { channel = csr::drtiosat::underflow_channel_read(); timestamp_event = csr::drtiosat::underflow_timestamp_event_read() as i64; timestamp_counter = csr::drtiosat::underflow_timestamp_counter_read() as i64; } error!("write underflow, channel={}, timestamp={}, counter={}, slack={}", channel, timestamp_event, timestamp_counter, timestamp_event-timestamp_counter); } if errors & 16 != 0 { error!("write overflow"); } unsafe { csr::drtiosat::protocol_error_write(errors); } } #[cfg(has_rtio_crg)] fn init_rtio_crg(timer: GlobalTimer) { unsafe { csr::rtio_crg::pll_reset_write(0); } timer.delay_us(150); let locked = unsafe { csr::rtio_crg::pll_locked_read() != 0 }; if !locked { error!("RTIO clock failed"); } } #[cfg(not(has_rtio_crg))] fn init_rtio_crg(_timer: GlobalTimer) { } fn hardware_tick(ts: &mut u64, timer: &mut GlobalTimer) { let now = timer.get_time(); let mut ts_ms = Milliseconds(*ts); if now > ts_ms { ts_ms = now + Milliseconds(200); *ts = ts_ms.0; } } #[cfg(has_si5324)] const SI5324_SETTINGS: si5324::FrequencySettings = si5324::FrequencySettings { n1_hs : 5, nc1_ls : 8, n2_hs : 7, n2_ls : 360, n31 : 63, n32 : 63, bwsel : 4, crystal_ref: true }; static mut LOG_BUFFER: [u8; 1<<17] = [0; 1<<17]; #[no_mangle] pub extern fn main_core0() -> i32 { enable_l2_cache(0x8); let mut timer = GlobalTimer::start(); let buffer_logger = unsafe { logger::BufferLogger::new(&mut LOG_BUFFER[..]) }; buffer_logger.set_uart_log_level(log::LevelFilter::Info); buffer_logger.register(); log::set_max_level(log::LevelFilter::Info); init_gateware(); info!("ARTIQ satellite manager starting..."); info!("gateware ident {}", identifier_read(&mut [0; 64])); ram::init_alloc_core0(); let mut i2c = I2c::i2c0(); i2c.init().expect("I2C initialization failed"); #[cfg(has_si5324)] si5324::setup(&mut i2c, &SI5324_SETTINGS, si5324::Input::Ckin1, &mut timer).expect("cannot initialize Si5324"); unsafe { csr::drtio_transceiver::stable_clkin_write(1); } timer.delay_us(1500); // wait for CPLL/QPLL lock unsafe { csr::drtio_transceiver::txenable_write(0xffffffffu32 as _); } init_rtio_crg(timer); #[cfg(has_drtio_routing)] let mut repeaters = [repeater::Repeater::default(); csr::DRTIOREP.len()]; #[cfg(not(has_drtio_routing))] let mut repeaters = [repeater::Repeater::default(); 0]; for i in 0..repeaters.len() { repeaters[i] = repeater::Repeater::new(i as u8); } let mut routing_table = drtio_routing::RoutingTable::default_empty(); let mut rank = 1; let mut hardware_tick_ts = 0; loop { while !drtiosat_link_rx_up() { drtiosat_process_errors(); #[allow(unused_mut)] for mut rep in repeaters.iter_mut() { rep.service(&routing_table, rank, &mut timer); } hardware_tick(&mut hardware_tick_ts, &mut timer); } info!("uplink is up, switching to recovered clock"); #[cfg(has_siphaser)] { si5324::siphaser::select_recovered_clock(&mut i2c, true, &mut timer).expect("failed to switch clocks"); si5324::siphaser::calibrate_skew(&mut timer).expect("failed to calibrate skew"); } drtioaux::reset(0); drtiosat_reset(false); drtiosat_reset_phy(false); while drtiosat_link_rx_up() { drtiosat_process_errors(); process_aux_packets(&mut repeaters, &mut routing_table, &mut rank, &mut timer, &mut i2c); #[allow(unused_mut)] for mut rep in repeaters.iter_mut() { rep.service(&routing_table, rank, &mut timer); } hardware_tick(&mut hardware_tick_ts, &mut timer); if drtiosat_tsc_loaded() { info!("TSC loaded from uplink"); for rep in repeaters.iter() { if let Err(e) = rep.sync_tsc(&mut timer) { error!("failed to sync TSC ({:?})", e); } } if let Err(e) = drtioaux::send(0, &drtioaux::Packet::TSCAck) { error!("aux packet error: {:?}", e); } } } drtiosat_reset_phy(true); drtiosat_reset(true); drtiosat_tsc_loaded(); info!("uplink is down, switching to local oscillator clock"); #[cfg(has_siphaser)] si5324::siphaser::select_recovered_clock(&mut i2c, false, &mut timer).expect("failed to switch clocks"); } } extern "C" { static mut __stack1_start: u32; } interrupt_handler!(IRQ, irq, __irq_stack0_start, __irq_stack1_start, { if MPIDR.read().cpu_id() == 1{ let mpcore = mpcore::RegisterBlock::mpcore(); let mut gic = gic::InterruptController::gic(mpcore); let id = gic.get_interrupt_id(); if id.0 == 0 { gic.end_interrupt(id); asm::exit_irq(); SP.write(&mut __stack1_start as *mut _ as u32); asm::enable_irq(); CORE1_RESTART.store(false, Ordering::Relaxed); notify_spin_lock(); main_core1(); } stdio::drop_uart(); } loop {} }); static mut PANICKED: [bool; 2] = [false; 2]; static CORE1_RESTART: AtomicBool = AtomicBool::new(false); pub fn restart_core1() { let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); CORE1_RESTART.store(true, Ordering::Relaxed); interrupt_controller.send_sgi(gic::InterruptId(0), gic::CPUCore::Core1.into()); while CORE1_RESTART.load(Ordering::Relaxed) { spin_lock_yield(); } } #[no_mangle] pub fn main_core1() { let mut interrupt_controller = gic::InterruptController::gic(mpcore::RegisterBlock::mpcore()); interrupt_controller.enable_interrupts(); loop {} } #[no_mangle] pub extern fn exception(_vect: u32, _regs: *const u32, pc: u32, ea: u32) { fn hexdump(addr: u32) { let addr = (addr - addr % 4) as *const u32; let mut ptr = addr; println!("@ {:08p}", ptr); for _ in 0..4 { print!("+{:04x}: ", ptr as usize - addr as usize); print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1); print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1); print!("{:08x} ", unsafe { *ptr }); ptr = ptr.wrapping_offset(1); print!("{:08x}\n", unsafe { *ptr }); ptr = ptr.wrapping_offset(1); } } hexdump(pc); hexdump(ea); panic!("exception at PC 0x{:x}, EA 0x{:x}", pc, ea) } #[no_mangle] // https://github.com/rust-lang/rust/issues/{38281,51647} #[panic_handler] pub fn panic_fmt(info: &core::panic::PanicInfo) -> ! { let id = MPIDR.read().cpu_id() as usize; print!("Core {} ", id); unsafe { if PANICKED[id] { println!("nested panic!"); loop {} } PANICKED[id] = true; } print!("panic at "); if let Some(location) = info.location() { print!("{}:{}:{}", location.file(), location.line(), location.column()); } else { print!("unknown location"); } if let Some(message) = info.message() { println!(": {}", message); } else { println!(""); } loop {} } // linker symbols extern "C" { static __text_start: u32; static __text_end: u32; static __exidx_start: u32; static __exidx_end: u32; } #[no_mangle] extern fn dl_unwind_find_exidx(_pc: *const u32, len_ptr: *mut u32) -> *const u32 { let length; let start: *const u32; unsafe { length = (&__exidx_end as *const u32).offset_from(&__exidx_start) as u32; start = &__exidx_start; *len_ptr = length; } start }