nac3_sca/nac3artiq/src/codegen.rs
David Mak fe06b2806f [meta] Reorganize order of use declarations
Use declarations are now grouped into 4 groups:

- Declarations from the standard library
- Declarations from external crates
- Declarations from other crates in this project
- Declarations from within this module

Furthermore, all use declarations are grouped together to enhance
readability. super::super is also replaced by an equivalent crate::
declaration.
2024-10-04 12:52:01 +08:00

1569 lines
59 KiB
Rust

use std::{
collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher},
iter::once,
mem,
sync::Arc,
};
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode {
/// No parallelism is currently registered for this context.
None,
/// Legacy (or shallow) parallelism. Default before NAC3.
///
/// Each statement within the `with` block is treated as statements to be executed in parallel.
Legacy,
/// Deep parallelism. Default since NAC3.
///
/// Each function call within the `with` block (except those within a nested `sequential` block)
/// are treated to be executed in parallel.
Deep,
}
pub struct ArtiqCodeGenerator<'a> {
name: String,
/// The size of a `size_t` variable in bits.
size_t: u32,
/// Monotonic counter for naming `start`/`stop` variables used by `with parallel` blocks.
name_counter: u32,
/// Variable for tracking the start of a `with parallel` block.
start: Option<Expr<Option<Type>>>,
/// Variable for tracking the end of a `with parallel` block.
end: Option<Expr<Option<Type>>>,
timeline: &'a (dyn TimeFns + Sync),
/// The [`ParallelMode`] of the current parallel context.
///
/// The current parallel context refers to the nearest `with parallel` or `with legacy_parallel`
/// statement, which is used to determine when and how the timeline should be updated.
parallel_mode: ParallelMode,
}
impl<'a> ArtiqCodeGenerator<'a> {
pub fn new(
name: String,
size_t: u32,
timeline: &'a (dyn TimeFns + Sync),
) -> ArtiqCodeGenerator<'a> {
assert!(size_t == 32 || size_t == 64);
ArtiqCodeGenerator {
name,
size_t,
name_counter: 0,
start: None,
end: None,
timeline,
parallel_mode: ParallelMode::None,
}
}
/// If the generator is currently in a direct-`parallel` block context, emits IR that resets the
/// position of the timeline to the initial timeline position before entering the `parallel`
/// block.
///
/// Direct-`parallel` block context refers to when the generator is generating statements whose
/// closest parent `with` statement is a `with parallel` block.
fn timeline_reset_start(&mut self, ctx: &mut CodeGenContext<'_, '_>) -> Result<(), String> {
if let Some(start) = self.start.clone() {
let start_val = self.gen_expr(ctx, &start)?.unwrap().to_basic_value_enum(
ctx,
self,
start.custom.unwrap(),
)?;
self.timeline.emit_at_mu(ctx, start_val);
}
Ok(())
}
/// If the generator is currently in a `parallel` block context, emits IR that updates the
/// maximum end position of the `parallel` block as specified by the timeline `end` value.
///
/// In general the `end` parameter should be set to `self.end` for updating the maximum end
/// position for the current `parallel` block. Other values can be passed in to update the
/// maximum end position for other `parallel` blocks.
///
/// `parallel`-block context refers to when the generator is generating statements within a
/// (possibly indirect) `parallel` block.
///
/// * `store_name` - The LLVM value name for the pointer to `end`. `.addr` will be appended to
/// the end of the provided value name.
fn timeline_update_end_max(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
end: Option<Expr<Option<Type>>>,
store_name: Option<&str>,
) -> Result<(), String> {
if let Some(end) = end {
let old_end = self.gen_expr(ctx, &end)?.unwrap().to_basic_value_enum(
ctx,
self,
end.custom.unwrap(),
)?;
let now = self.timeline.emit_now_mu(ctx);
let max =
call_int_smax(ctx, old_end.into_int_value(), now.into_int_value(), Some("smax"));
let end_store = self
.gen_store_target(
ctx,
&end,
store_name.map(|name| format!("{name}.addr")).as_deref(),
)?
.unwrap();
ctx.builder.build_store(end_store, max).unwrap();
}
Ok(())
}
}
impl<'b> CodeGenerator for ArtiqCodeGenerator<'b> {
fn get_name(&self) -> &str {
&self.name
}
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx> {
if self.size_t == 32 {
ctx.i32_type()
} else {
ctx.i64_type()
}
}
fn gen_block<'ctx, 'a, 'c, I: Iterator<Item = &'c Stmt<Option<Type>>>>(
&mut self,
ctx: &mut CodeGenContext<'ctx, 'a>,
stmts: I,
) -> Result<(), String>
where
Self: Sized,
{
// Legacy parallel emits timeline end-update/timeline-reset after each top-level statement
// in the parallel block
if self.parallel_mode == ParallelMode::Legacy {
for stmt in stmts {
self.gen_stmt(ctx, stmt)?;
if ctx.is_terminated() {
break;
}
self.timeline_update_end_max(ctx, self.end.clone(), Some("end"))?;
self.timeline_reset_start(ctx)?;
}
Ok(())
} else {
gen_block(self, ctx, stmts)
}
}
fn gen_call<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let result = gen_call(self, ctx, obj, fun, params)?;
// Deep parallel emits timeline end-update/timeline-reset after each function call
if self.parallel_mode == ParallelMode::Deep {
self.timeline_update_end_max(ctx, self.end.clone(), Some("end"))?;
self.timeline_reset_start(ctx)?;
}
Ok(result)
}
fn gen_with(
&mut self,
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::With { items, body, .. } = &stmt.node else { unreachable!() };
if items.len() == 1 && items[0].optional_vars.is_none() {
let item = &items[0];
// Behavior of parallel and sequential:
// Each function call (indirectly, can be inside a sequential block) within a parallel
// block will update the end variable to the maximum now_mu in the block.
// Each function call directly inside a parallel block will reset the timeline after
// execution. A parallel block within a sequential block (or not within any block) will
// set the timeline to the max now_mu within the block (and the outer max now_mu will also
// be updated).
//
// Implementation: We track the start and end separately.
// - If there is a start variable, it indicates that we are directly inside a
// parallel block and we have to reset the timeline after every function call.
// - If there is a end variable, it indicates that we are (indirectly) inside a
// parallel block, and we should update the max end value.
if let ExprKind::Name { id, ctx: name_ctx } = &item.context_expr.node {
if id == &"parallel".into() || id == &"legacy_parallel".into() {
let old_start = self.start.take();
let old_end = self.end.take();
let old_parallel_mode = self.parallel_mode;
let now = if let Some(old_start) = &old_start {
self.gen_expr(ctx, old_start)?.unwrap().to_basic_value_enum(
ctx,
self,
old_start.custom.unwrap(),
)?
} else {
self.timeline.emit_now_mu(ctx)
};
// Emulate variable allocation, as we need to use the CodeGenContext
// HashMap to store our variable due to lifetime limitation
// Note: we should be able to store variables directly if generic
// associative type is used by limiting the lifetime of CodeGenerator to
// the LLVM Context.
// The name is guaranteed to be unique as users cannot use this as variable
// name.
self.start = old_start.clone().map_or_else(
|| {
let start = format!("with-{}-start", self.name_counter).into();
let start_expr = Located {
// location does not matter at this point
location: stmt.location,
node: ExprKind::Name { id: start, ctx: *name_ctx },
custom: Some(ctx.primitives.int64),
};
let start = self
.gen_store_target(ctx, &start_expr, Some("start.addr"))?
.unwrap();
ctx.builder.build_store(start, now).unwrap();
Ok(Some(start_expr)) as Result<_, String>
},
|v| Ok(Some(v)),
)?;
let end = format!("with-{}-end", self.name_counter).into();
let end_expr = Located {
// location does not matter at this point
location: stmt.location,
node: ExprKind::Name { id: end, ctx: *name_ctx },
custom: Some(ctx.primitives.int64),
};
let end = self.gen_store_target(ctx, &end_expr, Some("end.addr"))?.unwrap();
ctx.builder.build_store(end, now).unwrap();
self.end = Some(end_expr);
self.name_counter += 1;
self.parallel_mode = match id.to_string().as_str() {
"parallel" => ParallelMode::Deep,
"legacy_parallel" => ParallelMode::Legacy,
_ => unreachable!(),
};
self.gen_block(ctx, body.iter())?;
let current = ctx.builder.get_insert_block().unwrap();
// if the current block is terminated, move before the terminator
// we want to set the timeline before reaching the terminator
// TODO: This may be unsound if there are multiple exit paths in the
// block... e.g.
// if ...:
// return
// Perhaps we can fix this by using actual with block?
let reset_position = if let Some(terminator) = current.get_terminator() {
ctx.builder.position_before(&terminator);
true
} else {
false
};
// set duration
let end_expr = self.end.take().unwrap();
let end_val = self.gen_expr(ctx, &end_expr)?.unwrap().to_basic_value_enum(
ctx,
self,
end_expr.custom.unwrap(),
)?;
// inside a sequential block
if old_start.is_none() {
self.timeline.emit_at_mu(ctx, end_val);
}
// inside a parallel block, should update the outer max now_mu
self.timeline_update_end_max(ctx, old_end.clone(), Some("outer.end"))?;
self.parallel_mode = old_parallel_mode;
self.end = old_end;
self.start = old_start;
if reset_position {
ctx.builder.position_at_end(current);
}
return Ok(());
} else if id == &"sequential".into() {
// For deep parallel, temporarily take away start to avoid function calls in
// the block from resetting the timeline.
// This does not affect legacy parallel, as the timeline will be reset after
// this block finishes execution.
let start = self.start.take();
self.gen_block(ctx, body.iter())?;
self.start = start;
// Reset the timeline when we are exiting the sequential block
// Legacy parallel does not need this, since it will be reset after codegen
// for this statement is completed
if self.parallel_mode == ParallelMode::Deep {
self.timeline_reset_start(ctx)?;
}
return Ok(());
}
}
}
// not parallel/sequential
gen_with(self, ctx, stmt)
}
}
fn gen_rpc_tag(
ctx: &mut CodeGenContext<'_, '_>,
ty: Type,
buffer: &mut Vec<u8>,
) -> Result<(), String> {
use nac3core::typecheck::typedef::TypeEnum::*;
let int32 = ctx.primitives.int32;
let int64 = ctx.primitives.int64;
let float = ctx.primitives.float;
let bool = ctx.primitives.bool;
let str = ctx.primitives.str;
let none = ctx.primitives.none;
if ctx.unifier.unioned(ty, int32) {
buffer.push(b'i');
} else if ctx.unifier.unioned(ty, int64) {
buffer.push(b'I');
} else if ctx.unifier.unioned(ty, float) {
buffer.push(b'f');
} else if ctx.unifier.unioned(ty, bool) {
buffer.push(b'b');
} else if ctx.unifier.unioned(ty, str) {
buffer.push(b's');
} else if ctx.unifier.unioned(ty, none) {
buffer.push(b'n');
} else {
let ty_enum = ctx.unifier.get_ty(ty);
match &*ty_enum {
TTuple { ty, is_vararg_ctx: false } => {
buffer.push(b't');
buffer.push(ty.len() as u8);
for ty in ty {
gen_rpc_tag(ctx, *ty, buffer)?;
}
}
TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let ty = iter_type_vars(params).next().unwrap().ty;
buffer.push(b'l');
gen_rpc_tag(ctx, ty, buffer)?;
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (ndarray_dtype, ndarray_ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
let ndarray_ndims = if let TLiteral { values, .. } =
&*ctx.unifier.get_ty_immutable(ndarray_ndims)
{
if values.len() != 1 {
return Err(format!("NDArray types with multiple literal bounds for ndims is not supported: {}", ctx.unifier.stringify(ty)));
}
let value = values[0].clone();
u64::try_from(value.clone())
.map_err(|()| format!("Expected u64 for ndarray.ndims, got {value}"))?
} else {
unreachable!()
};
assert!(
(0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims),
"Only NDArrays of sizes between 0 and 255 can be RPCed"
);
buffer.push(b'a');
buffer.push((ndarray_ndims & 0xFF) as u8);
gen_rpc_tag(ctx, ndarray_dtype, buffer)?;
}
_ => return Err(format!("Unsupported type: {:?}", ctx.unifier.stringify(ty))),
}
}
Ok(())
}
/// Formats an RPC argument to conform to the expected format required by `send_value`.
///
/// See `artiq/firmware/libproto_artiq/rpc_proto.rs` for the expected format.
fn format_rpc_arg<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
(arg, arg_ty, arg_idx): (BasicValueEnum<'ctx>, Type, usize),
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let arg_slot = match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
// NAC3: NDArray = { usize, usize*, T* }
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let dims_buf_sz =
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let buffer_size =
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
call_memcpy_generic(
ctx,
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
let pbuffer_dims_begin =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
pbuffer_dims_begin,
llvm_arg.dim_sizes().base_ptr(ctx, generator),
dims_buf_sz,
llvm_i1.const_zero(),
);
buffer.base_ptr(ctx, generator)
}
_ => {
let arg_slot = generator
.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{arg_idx}")))
.unwrap();
ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
};
debug_assert_eq!(arg_slot.get_type(), llvm_pi8);
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
// Setup ndims
let ndims =
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
let buffer = ctx
.builder
.build_array_alloca(
llvm_i8_8,
ctx.builder
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
.unwrap(),
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bit_cast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
ndarray.dim_sizes().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
let num_elements =
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data =
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::UGE,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
let alloc_ptr = ctx
.builder
.build_array_alloca(
llvm_elem_ty,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type();
let size_type = generator.get_size_type(ctx.ctx);
let ptr_type = int8.ptr_type(AddressSpace::default());
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
let service_id = int32.const_int(fun.1 .0 as u64, false);
// -- setup rpc tags
let mut tag = Vec::new();
if obj.is_some() {
tag.push(b'O');
}
for arg in &fun.0.args {
gen_rpc_tag(ctx, arg.ty, &mut tag)?;
}
tag.push(b':');
gen_rpc_tag(ctx, fun.0.ret, &mut tag)?;
let mut hasher = DefaultHasher::new();
tag.hash(&mut hasher);
let hash = format!("{}", hasher.finish());
let tag_ptr = ctx
.module
.get_global(hash.as_str())
.unwrap_or_else(|| {
let tag_arr_ptr = ctx.module.add_global(
int8.array_type(tag.len() as u32),
None,
format!("tagptr{}", fun.1 .0).as_str(),
);
tag_arr_ptr.set_initializer(&int8.const_array(
&tag.iter().map(|v| int8.const_int(u64::from(*v), false)).collect::<Vec<_>>(),
));
tag_arr_ptr.set_linkage(Linkage::Private);
let tag_ptr = ctx.module.add_global(tag_ptr_type, None, &hash);
tag_ptr.set_linkage(Linkage::Private);
tag_ptr.set_initializer(&ctx.ctx.const_struct(
&[
tag_arr_ptr.as_pointer_value().const_cast(ptr_type).into(),
size_type.const_int(tag.len() as u64, false).into(),
],
false,
));
tag_ptr
})
.as_pointer_value();
let arg_length = args.len() + usize::from(obj.is_some());
let stackptr = call_stacksave(ctx, Some("rpc.stack"));
let args_ptr = ctx
.builder
.build_array_alloca(
ptr_type,
ctx.ctx.i32_type().const_int(arg_length as u64, false),
"argptr",
)
.unwrap();
// -- rpc args handling
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in args {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys {
mapping
.insert(k.name, ctx.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty).into());
}
// reorder the parameters
let mut real_params = fun
.0
.args
.iter()
.map(|arg| {
mapping
.remove(&arg.name)
.unwrap()
.to_basic_value_enum(ctx, generator, arg.ty)
.map(|llvm_val| (llvm_val, arg.ty))
})
.collect::<Result<Vec<(_, _)>, _>>()?;
if let Some(obj) = obj {
if let ValueEnum::Static(obj_val) = obj.1 {
real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
} else {
// should be an error here...
panic!("only host object is allowed");
}
}
for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
let arg_ptr = unsafe {
ctx.builder.build_gep(
args_ptr,
&[int32.const_int(i as u64, false)],
&format!("rpc.arg{i}"),
)
}
.unwrap();
ctx.builder.build_store(arg_ptr, arg_slot).unwrap();
}
// call
if is_async {
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send_async",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
if is_async {
// async RPCs do not return any values
Ok(None)
} else {
let result = format_rpc_ret(generator, ctx, fun.0.ret);
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr);
}
Ok(result)
}
}
pub fn attributes_writeback(
ctx: &mut CodeGenContext<'_, '_>,
generator: &mut dyn CodeGenerator,
inner_resolver: &InnerResolver,
host_attributes: &PyObject,
) -> Result<(), String> {
Python::with_gil(|py| -> PyResult<Result<(), String>> {
let host_attributes: &PyList = host_attributes.downcast(py)?;
let top_levels = ctx.top_level.definitions.read();
let globals = inner_resolver.global_value_ids.read();
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let mut values = Vec::new();
let mut scratch_buffer = Vec::new();
for val in (*globals).values() {
let val = val.as_ref(py);
let ty = inner_resolver.get_obj_type(
py,
val,
&mut ctx.unifier,
&top_levels,
&ctx.primitives,
)?;
if let Err(ty) = ty {
return Ok(Err(ty));
}
let ty = ty.unwrap();
match &*ctx.unifier.get_ty(ty) {
TypeEnum::TObj { fields, obj_id, .. }
if *obj_id != ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
{
// we only care about primitive attributes
// for non-primitive attributes, they should be in another global
let mut attributes = Vec::new();
let obj = inner_resolver.get_obj_value(py, val, ctx, generator, ty)?.unwrap();
for (name, (field_ty, is_mutable)) in fields {
if !is_mutable {
continue;
}
if gen_rpc_tag(ctx, *field_ty, &mut scratch_buffer).is_ok() {
attributes.push(name.to_string());
let (index, _) = ctx.get_attr_index(ty, *name);
values.push((
*field_ty,
ctx.build_gep_and_load(
obj.into_pointer_value(),
&[zero, int32.const_int(index as u64, false)],
None,
),
));
}
}
if !attributes.is_empty() {
let pydict = PyDict::new(py);
pydict.set_item("obj", val)?;
pydict.set_item("fields", attributes)?;
host_attributes.append(pydict)?;
}
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let elem_ty = iter_type_vars(params).next().unwrap().ty;
if gen_rpc_tag(ctx, elem_ty, &mut scratch_buffer).is_ok() {
let pydict = PyDict::new(py);
pydict.set_item("obj", val)?;
host_attributes.append(pydict)?;
values.push((
ty,
inner_resolver.get_obj_value(py, val, ctx, generator, ty)?.unwrap(),
));
}
}
_ => {}
}
}
let fun = FunSignature {
args: values
.iter()
.enumerate()
.map(|(i, (ty, _))| FuncArg {
name: i.to_string().into(),
ty: *ty,
default_value: None,
is_vararg: false,
})
.collect(),
ret: ctx.primitives.none,
vars: VarMap::default(),
};
let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, false)
{
return Ok(Err(e));
}
Ok(Ok(()))
})
.unwrap()?;
Ok(())
}
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
})))
}
/// Returns the `fprintf` format constant for the given [`llvm_int_t`][`IntType`] on a platform with
/// [`llvm_usize`] as its native word size.
///
/// Note that, similar to format constants in `<inttypes.h>`, these constants need to be prepended
/// with `%`.
#[must_use]
fn get_fprintf_format_constant<'ctx>(
llvm_usize: IntType<'ctx>,
llvm_int_t: IntType<'ctx>,
is_unsigned: bool,
) -> String {
debug_assert!(matches!(llvm_usize.get_bit_width(), 8 | 16 | 32 | 64));
let conv_spec = if is_unsigned { 'u' } else { 'd' };
// https://en.cppreference.com/w/c/language/arithmetic_types
// Note that NAC3 does **not** support LP32 and LLP64 configurations
match llvm_int_t.get_bit_width() {
8 => format!("hh{conv_spec}"),
16 => format!("h{conv_spec}"),
32 => conv_spec.to_string(),
64 => format!("{}{conv_spec}", if llvm_usize.get_bit_width() == 64 { "l" } else { "ll" }),
_ => todo!(
"Not yet implemented for i{} on {}-bit platform",
llvm_int_t.get_bit_width(),
llvm_usize.get_bit_width()
),
}
}
/// Prints one or more `values` to `core_log` or `rtio_log`.
///
/// * `separator` - The separator between multiple values.
/// * `suffix` - String to terminate the printed string, if any.
/// * `as_repr` - Whether the `repr()` output of values instead of `str()`.
/// * `as_rtio` - Whether to print to `rtio_log` instead of `core_log`.
fn polymorphic_print<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
values: &[(Type, ValueEnum<'ctx>)],
separator: &str,
suffix: Option<&str>,
as_repr: bool,
as_rtio: bool,
) -> Result<(), String> {
let printf = |ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
fmt: String,
args: Vec<BasicValueEnum<'ctx>>| {
debug_assert!(!fmt.is_empty());
debug_assert_eq!(fmt.as_bytes().last().unwrap(), &0u8);
let fn_name = if as_rtio { "rtio_log" } else { "core_log" };
let print_fn = ctx.module.get_function(fn_name).unwrap_or_else(|| {
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_t = if as_rtio {
let llvm_void = ctx.ctx.void_type();
llvm_void.fn_type(&[llvm_pi8.into()], true)
} else {
let llvm_i32 = ctx.ctx.i32_type();
llvm_i32.fn_type(&[llvm_pi8.into()], true)
};
ctx.module.add_function(fn_name, fn_t, None)
});
let fmt = ctx.gen_string(generator, fmt);
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
ctx.builder
.build_call(
print_fn,
&once(fmt.into()).chain(args).map(BasicValueEnum::into).collect_vec(),
"",
)
.unwrap();
};
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let suffix = suffix.unwrap_or_default();
let mut fmt = String::new();
let mut args = Vec::new();
let flush = |ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
fmt: &mut String,
args: &mut Vec<BasicValueEnum<'ctx>>| {
if !fmt.is_empty() {
fmt.push('\0');
printf(ctx, generator, mem::take(fmt), mem::take(args));
}
};
for (ty, value) in values {
let ty = *ty;
let value = value.clone().to_basic_value_enum(ctx, generator, ty).unwrap();
if !fmt.is_empty() {
fmt.push_str(separator);
}
match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TTuple { ty: tys, is_vararg_ctx: false } => {
let pvalue = {
let pvalue = generator.gen_var_alloc(ctx, value.get_type(), None).unwrap();
ctx.builder.build_store(pvalue, value).unwrap();
pvalue
};
fmt.push('(');
flush(ctx, generator, &mut fmt, &mut args);
let tuple_vals = tys
.iter()
.enumerate()
.map(|(i, ty)| {
(*ty, {
let pfield =
ctx.builder.build_struct_gep(pvalue, i as u32, "").unwrap();
ValueEnum::from(ctx.builder.build_load(pfield, "").unwrap())
})
})
.collect_vec();
polymorphic_print(ctx, generator, &tuple_vals, ", ", None, true, as_rtio)?;
if tuple_vals.len() == 1 {
fmt.push_str(",)");
} else {
fmt.push(')');
}
}
TypeEnum::TFunc { .. } => todo!(),
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::None.id() => {
fmt.push_str("None");
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Bool.id() => {
fmt.push_str("%.*s");
let true_str = ctx.gen_string(generator, "True");
let true_data =
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
let false_str = ctx.gen_string(generator, "False");
let false_data =
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
let false_len =
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
args.extend([
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
]);
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == PrimDef::Int32.id()
|| *obj_id == PrimDef::Int64.id()
|| *obj_id == PrimDef::UInt32.id()
|| *obj_id == PrimDef::UInt64.id() =>
{
let is_unsigned =
*obj_id == PrimDef::UInt32.id() || *obj_id == PrimDef::UInt64.id();
let llvm_int_t = value.get_type().into_int_type();
debug_assert!(matches!(llvm_usize.get_bit_width(), 32 | 64));
debug_assert!(matches!(llvm_int_t.get_bit_width(), 32 | 64));
let fmt_spec = format!(
"%{}",
get_fprintf_format_constant(llvm_usize, llvm_int_t, is_unsigned)
);
fmt.push_str(fmt_spec.as_str());
args.push(value);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Float.id() => {
fmt.push_str("%g");
args.push(value);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Str.id() => {
if as_repr {
fmt.push_str("\"%.*s\"");
} else {
fmt.push_str("%.*s");
}
let str = value.into_struct_value();
let str_data = unsafe { str.get_field_at_index_unchecked(0) }.into_pointer_value();
let str_len = unsafe { str.get_field_at_index_unchecked(1) }.into_int_value();
args.extend(&[str_len.into(), str_data.into()]);
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let elem_ty = *params.iter().next().unwrap().1;
fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None);
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
"",
None,
true,
as_rtio,
)?;
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::ULT, i, last, "")
.unwrap())
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
fmt.push(']');
flush(ctx, generator, &mut fmt, &mut args);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args);
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
"",
None,
true,
as_rtio,
)?;
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::ULT, i, last, "")
.unwrap())
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
fmt.push_str(")]");
flush(ctx, generator, &mut fmt, &mut args);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Range.id() => {
fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
let (start, stop, step) = destructure_range(ctx, val);
polymorphic_print(
ctx,
generator,
&[
(ctx.primitives.int32, start.into()),
(ctx.primitives.int32, stop.into()),
(ctx.primitives.int32, step.into()),
],
", ",
None,
false,
as_rtio,
)?;
fmt.push(')');
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Exception.id() => {
let fmt_str = format!(
"%{}(%{}, %{1:}, %{1:})",
get_fprintf_format_constant(llvm_usize, llvm_i32, false),
get_fprintf_format_constant(llvm_usize, llvm_i64, false),
);
let exn = value.into_pointer_value();
let name = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
None,
)
.into_int_value();
let param0 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(6, false)],
None,
)
.into_int_value();
let param1 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(7, false)],
None,
)
.into_int_value();
let param2 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(8, false)],
None,
)
.into_int_value();
fmt.push_str(fmt_str.as_str());
args.extend_from_slice(&[name.into(), param0.into(), param1.into(), param2.into()]);
}
_ => unreachable!(
"Unsupported object type for polymorphic_print: {}",
ctx.unifier.stringify(ty)
),
}
}
fmt.push_str(suffix);
flush(ctx, generator, &mut fmt, &mut args);
Ok(())
}
/// Invokes the `core_log` intrinsic function.
pub fn call_core_log_impl<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
arg: (Type, BasicValueEnum<'ctx>),
) -> Result<(), String> {
let (arg_ty, arg_val) = arg;
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\n"), false, false)?;
Ok(())
}
/// Invokes the `rtio_log` intrinsic function.
pub fn call_rtio_log_impl<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
channel: StructValue<'ctx>,
arg: (Type, BasicValueEnum<'ctx>),
) -> Result<(), String> {
let (arg_ty, arg_val) = arg;
polymorphic_print(
ctx,
generator,
&[(ctx.primitives.str, channel.into())],
" ",
Some("\x1E"),
false,
true,
)?;
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\x1D"), false, true)?;
Ok(())
}
/// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
call_core_log_impl(ctx, generator, (value_ty, value_arg))
}
/// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let channel_ty = fun.0.args[0].ty;
assert!(ctx.unifier.unioned(channel_ty, ctx.primitives.str));
let channel_arg =
args[0].1.clone().to_basic_value_enum(ctx, generator, channel_ty)?.into_struct_value();
let value_ty = fun.0.args[1].ty;
let value_arg = args[1].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
call_rtio_log_impl(ctx, generator, channel_arg, (value_ty, value_arg))
}