forked from M-Labs/nac3
547 lines
22 KiB
Rust
547 lines
22 KiB
Rust
use std::borrow::BorrowMut;
|
|
use std::{collections::HashMap, collections::HashSet, sync::Arc};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::symbol_resolver::SymbolResolver;
|
|
use crate::typecheck::typedef::{FunSignature, FuncArg};
|
|
use parking_lot::{Mutex, RwLock};
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
type_vars: Vec<Type>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<DefinitionId>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// Value: AST annotated with types together with a unification table index. Could contain
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
impl TopLevelDef {
|
|
fn get_function_type(&self) -> Result<Type, String> {
|
|
if let Self::Function { signature, .. } = self {
|
|
Ok(*signature)
|
|
} else {
|
|
Err("only expect function def here".into())
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
}
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
|
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
|
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: RwLock<Unifier>,
|
|
// primitive store
|
|
pub primitives: PrimitiveStore,
|
|
// mangled class method name to def_id
|
|
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
|
// record the def id of the classes whoses fields and methods are to be analyzed
|
|
pub to_be_analyzed_class: RwLock<Vec<DefinitionId>>,
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
pub fn to_top_level_context(&self) -> TopLevelContext {
|
|
TopLevelContext {
|
|
definitions: self.definition_list.clone(),
|
|
// FIXME: all the big unifier or?
|
|
unifiers: Default::default(),
|
|
}
|
|
}
|
|
|
|
fn name_mangling(mut class_name: String, method_name: &str) -> String {
|
|
class_name.push_str(method_name);
|
|
class_name
|
|
}
|
|
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
|
|
let primitives = Self::make_primitives();
|
|
|
|
let top_level_def_list = vec![
|
|
RwLock::new(Self::make_top_level_class_def(0, None)),
|
|
RwLock::new(Self::make_top_level_class_def(1, None)),
|
|
RwLock::new(Self::make_top_level_class_def(2, None)),
|
|
RwLock::new(Self::make_top_level_class_def(3, None)),
|
|
RwLock::new(Self::make_top_level_class_def(4, None)),
|
|
];
|
|
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
|
|
|
let composer = TopLevelComposer {
|
|
definition_list: RwLock::new(top_level_def_list).into(),
|
|
ast_list: RwLock::new(ast_list),
|
|
primitives: primitives.0,
|
|
unifier: primitives.1.into(),
|
|
class_method_to_def_id: Default::default(),
|
|
to_be_analyzed_class: Default::default(),
|
|
};
|
|
(
|
|
vec![
|
|
("int32".into(), DefinitionId(0), composer.primitives.int32),
|
|
("int64".into(), DefinitionId(1), composer.primitives.int64),
|
|
("float".into(), DefinitionId(2), composer.primitives.float),
|
|
("bool".into(), DefinitionId(3), composer.primitives.bool),
|
|
("none".into(), DefinitionId(4), composer.primitives.none),
|
|
],
|
|
composer,
|
|
)
|
|
}
|
|
|
|
/// already include the definition_id of itself inside the ancestors vector
|
|
pub fn make_top_level_class_def(
|
|
index: usize,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: vec![DefinitionId(index)],
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
pub fn make_top_level_function_def(
|
|
name: String,
|
|
ty: Type,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
/// step 0, register, just remeber the names of top level classes/function
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> Result<(String, DefinitionId), String> {
|
|
let (
|
|
mut def_list,
|
|
mut ast_list
|
|
) = (
|
|
self.definition_list.write(),
|
|
self.ast_list.write()
|
|
);
|
|
|
|
assert_eq!(def_list.len(), ast_list.len());
|
|
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
let class_name = name.to_string();
|
|
let class_def_id = def_list.len();
|
|
|
|
// add the class to the definition lists
|
|
def_list
|
|
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarly, later will move the ast inside
|
|
ast_list.push(None);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id? so we have to manage it ourselves
|
|
// by using `class_method_to_def_id`
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
|
let fun_name = Self::name_mangling(class_name.clone(), name);
|
|
let def_id = def_list.len();
|
|
|
|
// add to the definition list
|
|
def_list.push(
|
|
Self::make_top_level_function_def(
|
|
fun_name.clone(),
|
|
self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: Default::default(),
|
|
ret: self.primitives.none.into(),
|
|
vars: Default::default(),
|
|
}.into())),
|
|
resolver.clone(),
|
|
)
|
|
.into(),
|
|
);
|
|
// the ast of class method is in the class, push None in to the list here
|
|
ast_list.push(None);
|
|
|
|
// class method, do not let the symbol manager manage it, use our own map
|
|
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
|
}
|
|
}
|
|
|
|
// move the ast to the entry of the class in the ast_list
|
|
ast_list[class_def_id] = Some(ast);
|
|
|
|
// put the constructor into the def_list
|
|
def_list.push(
|
|
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
|
.into(),
|
|
);
|
|
ast_list.push(None);
|
|
|
|
// class, put its def_id into the to be analyzed set
|
|
let mut to_be_analyzed = self.to_be_analyzed_class.write();
|
|
to_be_analyzed.push(DefinitionId(class_def_id));
|
|
|
|
|
|
Ok((class_name, DefinitionId(class_def_id)))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
let fun_name = name.to_string();
|
|
|
|
// add to the definition list
|
|
def_list.push(
|
|
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
|
.into(),
|
|
);
|
|
ast_list.push(Some(ast));
|
|
|
|
// return
|
|
Ok((fun_name, DefinitionId(def_list.len() - 1)))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
/// step 1, analyze the type vars associated with top level class
|
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_list.write();
|
|
let ast_list = self.ast_list.read();
|
|
let mut unifier = self.unifier.write();
|
|
|
|
for (class_def, class_ast) in def_list
|
|
.iter_mut()
|
|
.zip(ast_list.iter())
|
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
|
// only deal with class def here
|
|
let (
|
|
class_bases,
|
|
class_def_type_vars,
|
|
class_resolver
|
|
) = {
|
|
if let TopLevelDef::Class {
|
|
type_vars,
|
|
resolver,
|
|
..
|
|
} = class_def.get_mut() {
|
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
|
bases,
|
|
..
|
|
}, .. }) = class_ast {
|
|
(bases, type_vars, resolver)
|
|
} else { unreachable!("must be both class") }
|
|
} else { continue }
|
|
};
|
|
|
|
let mut is_generic = false;
|
|
for b in class_bases {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript {value, slice, ..} if {
|
|
// can only be `Generic[...]` and this can only appear once
|
|
if let ast::ExprKind::Name { id, .. } = &value.node {
|
|
if id == "Generic" {
|
|
if !is_generic {
|
|
is_generic = true;
|
|
true
|
|
} else {
|
|
return Err("Only single Generic[...] can be in bases".into())
|
|
}
|
|
} else { false }
|
|
} else { false }
|
|
} => {
|
|
// if `class A(Generic[T, V, G])`
|
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
|
// parse the type vars
|
|
let type_vars = elts
|
|
.iter()
|
|
.map(|e|
|
|
class_resolver
|
|
.as_ref()
|
|
.unwrap()
|
|
.lock()
|
|
.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
e)
|
|
)
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// check if all are unique type vars
|
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
|
let all_unique_type_var = type_vars
|
|
.iter()
|
|
.all(|x| {
|
|
let ty = unifier.get_ty(*x);
|
|
if let TypeEnum::TVar {id, ..} = ty.as_ref() {
|
|
occured_type_var_id.insert(*id)
|
|
} else { false }
|
|
});
|
|
|
|
if !all_unique_type_var { return Err("expect unique type variables".into()) }
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.extend(type_vars);
|
|
|
|
// `class A(Generic[T])`
|
|
} else {
|
|
let ty =
|
|
class_resolver
|
|
.as_ref()
|
|
.unwrap()
|
|
.lock()
|
|
.parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
&slice
|
|
)?;
|
|
// check if it is type var
|
|
let is_type_var = matches!(
|
|
unifier.get_ty(ty).as_ref(),
|
|
&TypeEnum::TVar { .. }
|
|
);
|
|
if !is_type_var { return Err("expect type variable here".into()) }
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.push(ty);
|
|
}
|
|
}
|
|
|
|
// if others, do nothing in this function
|
|
_ => continue
|
|
}
|
|
}
|
|
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
/// step 2, base classes. Need to separate step1 and step2 for this reason:
|
|
/// `class B(Generic[T, V]);
|
|
/// class A(B[int, bool])`
|
|
/// if the type var associated with class `B` has not been handled properly,
|
|
/// the parse of type annotation of `B[int, bool]` will fail
|
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_list.write();
|
|
let ast_list = self.ast_list.read();
|
|
let mut unifier = self.unifier.write();
|
|
|
|
for (class_def, class_ast) in def_list
|
|
.iter_mut()
|
|
.zip(ast_list.iter())
|
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
|
let (
|
|
class_bases,
|
|
class_ancestors,
|
|
class_resolver
|
|
) = {
|
|
if let TopLevelDef::Class {
|
|
ancestors,
|
|
resolver,
|
|
..
|
|
} = class_def.get_mut() {
|
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
|
bases,
|
|
..
|
|
}, .. }) = class_ast {
|
|
(bases, ancestors, resolver)
|
|
} else { unreachable!("must be both class") }
|
|
} else { continue }
|
|
};
|
|
for b in class_bases {
|
|
// type vars have already been handled, so skip on `Generic[...]`
|
|
if let ast::ExprKind::Subscript {value, ..} = &b.node {
|
|
if let ast::ExprKind::Name {id, ..} = &value.node {
|
|
if id == "Generic" { continue }
|
|
}
|
|
}
|
|
// get the def id of the base class
|
|
let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation(
|
|
&self.to_top_level_context(),
|
|
unifier.borrow_mut(),
|
|
&self.primitives,
|
|
b
|
|
)?;
|
|
let base_id =
|
|
if let TypeEnum::TObj {obj_id, ..} = unifier.get_ty(base_ty).as_ref() {
|
|
*obj_id
|
|
} else { return Err("expect concrete class/type to be base class".into()) };
|
|
|
|
// write to the class ancestors
|
|
class_ancestors.push(base_id);
|
|
}
|
|
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
/// step 3, class_fields
|
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
|
let mut def_list = self.definition_list.write();
|
|
let ast_list = self.ast_list.read();
|
|
let mut unifier = self.unifier.write();
|
|
let class_method_to_def_id = self.class_method_to_def_id.read();
|
|
let mut to_be_analyzed_class = self.to_be_analyzed_class.write();
|
|
|
|
while !to_be_analyzed_class.is_empty() {
|
|
let ind = to_be_analyzed_class.remove(0).0;
|
|
let (class_def, class_ast) = (
|
|
&mut def_list[ind], &ast_list[ind]
|
|
);
|
|
|
|
let (
|
|
class_name,
|
|
class_fields,
|
|
class_methods,
|
|
class_resolver,
|
|
class_body
|
|
) = {
|
|
if let TopLevelDef::Class {
|
|
resolver,
|
|
fields,
|
|
methods,
|
|
..
|
|
} = class_def.get_mut() {
|
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
|
name,
|
|
body,
|
|
..
|
|
}, .. }) = class_ast {
|
|
(name, fields, methods, resolver, body)
|
|
} else { unreachable!("must be both class") }
|
|
} else {
|
|
to_be_analyzed_class.push(DefinitionId(ind));
|
|
continue
|
|
}
|
|
};
|
|
for b in class_body {
|
|
if let ast::StmtKind::FunctionDef {
|
|
args: func_args,
|
|
body: func_body,
|
|
name: func_name,
|
|
returns: func_returns,
|
|
..
|
|
} = &b.node {
|
|
// unwrap should not fail
|
|
let method_def_id =
|
|
class_method_to_def_id
|
|
.get(&Self::name_mangling(
|
|
class_name.into(),
|
|
func_name)
|
|
).unwrap();
|
|
let method_def = def_list[method_def_id.0].write();
|
|
let method_ty = method_def.get_function_type()?;
|
|
let method_signature = unifier.get_ty(method_ty);
|
|
|
|
if let TypeEnum::TFunc(sig) = method_signature.as_ref() {
|
|
let mut sig = &mut *sig.borrow_mut();
|
|
} else { unreachable!() }
|
|
|
|
|
|
} else {
|
|
// what should we do with `class A: a = 3`?
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
|
|
}
|
|
|
|
fn analyze_top_level_inheritance(&mut self) -> Result<(), String> {
|
|
unimplemented!()
|
|
}
|
|
|
|
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
|
|
unimplemented!()
|
|
}
|
|
}
|