nac3_sca/nac3core/src/toplevel/numpy.rs

104 lines
3.1 KiB
Rust

use itertools::Itertools;
use crate::{
toplevel::helper::PRIMITIVE_DEF_IDS,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, Unifier, VarMap},
},
};
/// Creates a `ndarray` [`Type`] with the given type arguments.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn make_ndarray_ty(
unifier: &mut Unifier,
primitives: &PrimitiveStore,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
subst_ndarray_tvars(unifier, primitives.ndarray, dtype, ndims)
}
/// Substitutes type variables in `ndarray`.
///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized.
pub fn subst_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,
dtype: Option<Type>,
ndims: Option<Type>,
) -> Type {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PRIMITIVE_DEF_IDS.ndarray);
if dtype.is_none() && ndims.is_none() {
return ndarray
}
let tvar_ids = params.iter()
.map(|(obj_id, _)| *obj_id)
.collect_vec();
debug_assert_eq!(tvar_ids.len(), 2);
let mut tvar_subst = VarMap::new();
if let Some(dtype) = dtype {
tvar_subst.insert(tvar_ids[0], dtype);
}
if let Some(ndims) = ndims {
tvar_subst.insert(tvar_ids[1], ndims);
}
unifier.subst(ndarray, &tvar_subst).unwrap_or(ndarray)
}
fn unpack_ndarray_tvars(
unifier: &mut Unifier,
ndarray: Type,
) -> Vec<(u32, Type)> {
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
};
debug_assert_eq!(*obj_id, PRIMITIVE_DEF_IDS.ndarray);
debug_assert_eq!(params.len(), 2);
params.iter()
.sorted_by_key(|(obj_id, _)| *obj_id)
.map(|(var_id, ty)| (*var_id, *ty))
.collect_vec()
}
/// Unpacks the type variable IDs of `ndarray` into a tuple. The elements of the tuple corresponds
/// to `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray`
/// respectively.
pub fn unpack_ndarray_var_ids(
unifier: &mut Unifier,
ndarray: Type,
) -> (u32, u32) {
unpack_ndarray_tvars(unifier, ndarray)
.into_iter()
.map(|v| v.0)
.collect_tuple()
.unwrap()
}
/// Unpacks the type variables of `ndarray` into a tuple. The elements of the tuple corresponds to
/// `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray` respectively.
pub fn unpack_ndarray_var_tys(
unifier: &mut Unifier,
ndarray: Type,
) -> (Type, Type) {
unpack_ndarray_tvars(unifier, ndarray)
.into_iter()
.map(|v| v.1)
.collect_tuple()
.unwrap()
}