forked from M-Labs/nac3
1121 lines
49 KiB
Rust
1121 lines
49 KiB
Rust
use std::{collections::HashMap, convert::TryInto, iter::once};
|
|
|
|
use crate::{
|
|
codegen::{
|
|
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
|
get_llvm_type,
|
|
irrt::*,
|
|
CodeGenContext, CodeGenTask,
|
|
},
|
|
symbol_resolver::{SymbolValue, ValueEnum},
|
|
toplevel::{DefinitionId, TopLevelDef},
|
|
typecheck::typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
|
|
};
|
|
use inkwell::{
|
|
types::{BasicType, BasicTypeEnum},
|
|
values::{BasicValueEnum, IntValue, PointerValue},
|
|
AddressSpace,
|
|
};
|
|
use itertools::{chain, izip, zip, Itertools};
|
|
use nac3parser::ast::{self, Boolop, Comprehension, Constant, Expr, ExprKind, Operator, StrRef};
|
|
|
|
use super::CodeGenerator;
|
|
|
|
pub fn get_subst_key(
|
|
unifier: &mut Unifier,
|
|
obj: Option<Type>,
|
|
fun_vars: &HashMap<u32, Type>,
|
|
filter: Option<&Vec<u32>>,
|
|
) -> String {
|
|
let mut vars = obj
|
|
.map(|ty| {
|
|
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) {
|
|
params.borrow().clone()
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
})
|
|
.unwrap_or_default();
|
|
vars.extend(fun_vars.iter());
|
|
let sorted = vars.keys().filter(|id| filter.map(|v| v.contains(id)).unwrap_or(true)).sorted();
|
|
sorted
|
|
.map(|id| unifier.stringify(vars[id], &mut |id| id.to_string(), &mut |id| id.to_string()))
|
|
.join(", ")
|
|
}
|
|
|
|
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
|
|
pub fn build_gep_and_load(
|
|
&mut self,
|
|
ptr: PointerValue<'ctx>,
|
|
index: &[IntValue<'ctx>],
|
|
) -> BasicValueEnum<'ctx> {
|
|
unsafe { self.builder.build_load(self.builder.build_gep(ptr, index, "gep"), "load") }
|
|
}
|
|
|
|
fn get_subst_key(
|
|
&mut self,
|
|
obj: Option<Type>,
|
|
fun: &FunSignature,
|
|
filter: Option<&Vec<u32>>,
|
|
) -> String {
|
|
get_subst_key(&mut self.unifier, obj, &fun.vars, filter)
|
|
}
|
|
|
|
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize {
|
|
let obj_id = match &*self.unifier.get_ty(ty) {
|
|
TypeEnum::TObj { obj_id, .. } => *obj_id,
|
|
// we cannot have other types, virtual type should be handled by function calls
|
|
_ => unreachable!(),
|
|
};
|
|
let def = &self.top_level.definitions.read()[obj_id.0];
|
|
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
|
|
fields.iter().find_position(|x| x.0 == attr).unwrap().0
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
index
|
|
}
|
|
|
|
fn gen_symbol_val(&mut self, val: &SymbolValue) -> BasicValueEnum<'ctx> {
|
|
match val {
|
|
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::Bool(v) => self.ctx.bool_type().const_int(*v as u64, true).into(),
|
|
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
|
|
SymbolValue::Tuple(ls) => {
|
|
let vals = ls.iter().map(|v| self.gen_symbol_val(v)).collect_vec();
|
|
let fields = vals.iter().map(|v| v.get_type()).collect_vec();
|
|
let ty = self.ctx.struct_type(&fields, false);
|
|
let ptr = self.builder.build_alloca(ty, "tuple");
|
|
let zero = self.ctx.i32_type().const_zero();
|
|
unsafe {
|
|
for (i, val) in vals.into_iter().enumerate() {
|
|
let p = self.builder.build_in_bounds_gep(
|
|
ptr,
|
|
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
|
|
"elemptr",
|
|
);
|
|
self.builder.build_store(p, val);
|
|
}
|
|
}
|
|
self.builder.build_load(ptr, "tup_val")
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn get_llvm_type(
|
|
&mut self,
|
|
generator: &mut dyn CodeGenerator,
|
|
ty: Type,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
get_llvm_type(
|
|
self.ctx,
|
|
generator,
|
|
&mut self.unifier,
|
|
self.top_level,
|
|
&mut self.type_cache,
|
|
ty,
|
|
)
|
|
}
|
|
|
|
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
|
|
match value {
|
|
Constant::Bool(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.bool));
|
|
let ty = self.ctx.bool_type();
|
|
ty.const_int(if *v { 1 } else { 0 }, false).into()
|
|
}
|
|
Constant::Int(Some(val)) => {
|
|
let ty = if self.unifier.unioned(ty, self.primitives.int32) {
|
|
self.ctx.i32_type()
|
|
} else if self.unifier.unioned(ty, self.primitives.int64) {
|
|
self.ctx.i64_type()
|
|
} else {
|
|
unreachable!();
|
|
};
|
|
ty.const_int(*val as u64, false).into()
|
|
}
|
|
Constant::Float(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.float));
|
|
let ty = self.ctx.f64_type();
|
|
ty.const_float(*v).into()
|
|
}
|
|
Constant::Tuple(v) => {
|
|
let ty = self.unifier.get_ty(ty);
|
|
let types =
|
|
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
|
|
let values = zip(types.into_iter(), v.iter())
|
|
.map(|(ty, v)| self.gen_const(v, ty))
|
|
.collect_vec();
|
|
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let ty = self.ctx.struct_type(&types, false);
|
|
ty.const_named_struct(&values).into()
|
|
}
|
|
Constant::Str(v) => {
|
|
assert!(self.unifier.unioned(ty, self.primitives.str));
|
|
self.builder.build_global_string_ptr(v, "const").as_pointer_value().into()
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
pub fn gen_int_ops(
|
|
&mut self,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (lhs, rhs) =
|
|
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
match op {
|
|
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
|
|
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
|
|
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
|
|
Operator::Div => {
|
|
let float = self.ctx.f64_type();
|
|
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
|
|
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
|
|
self.builder.build_float_div(left, right, "fdiv").into()
|
|
}
|
|
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
|
|
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
|
|
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
|
|
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
|
|
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
|
|
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
|
|
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
|
|
Operator::Pow => integer_power(self, lhs, rhs).into(),
|
|
// special implementation?
|
|
Operator::MatMult => unreachable!(),
|
|
}
|
|
}
|
|
|
|
pub fn gen_float_ops(
|
|
&mut self,
|
|
op: &Operator,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
|
|
(lhs, rhs)
|
|
{
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let float = self.ctx.f64_type();
|
|
match op {
|
|
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
|
|
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
|
|
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
|
|
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
|
|
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
|
|
Operator::FloorDiv => {
|
|
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
|
|
let floor_intrinsic =
|
|
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
|
|
let fn_type = float.fn_type(&[float.into()], false);
|
|
self.module.add_function("llvm.floor.f64", fn_type, None)
|
|
});
|
|
self.builder
|
|
.build_call(floor_intrinsic, &[div.into()], "floor")
|
|
.try_as_basic_value()
|
|
.left()
|
|
.unwrap()
|
|
}
|
|
Operator::Pow => {
|
|
let pow_intrinsic = self.module.get_function("llvm.pow.f64").unwrap_or_else(|| {
|
|
let fn_type = float.fn_type(&[float.into(), float.into()], false);
|
|
self.module.add_function("llvm.pow.f64", fn_type, None)
|
|
});
|
|
self.builder
|
|
.build_call(pow_intrinsic, &[lhs.into(), rhs.into()], "f_pow")
|
|
.try_as_basic_value()
|
|
.unwrap_left()
|
|
}
|
|
// special implementation?
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
signature: &FunSignature,
|
|
def: &TopLevelDef,
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
match def {
|
|
TopLevelDef::Class { methods, .. } => {
|
|
// TODO: what about other fields that require alloca?
|
|
let mut fun_id = None;
|
|
for (name, _, id) in methods.iter() {
|
|
if name == &"__init__".into() {
|
|
fun_id = Some(*id);
|
|
}
|
|
}
|
|
let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type();
|
|
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
|
|
let zelf: BasicValueEnum<'ctx> = ctx.builder.build_alloca(zelf_ty, "alloca").into();
|
|
// call `__init__` if there is one
|
|
if let Some(fun_id) = fun_id {
|
|
let mut sign = signature.clone();
|
|
sign.ret = ctx.primitives.none;
|
|
generator.gen_call(
|
|
ctx,
|
|
Some((signature.ret, zelf.into())),
|
|
(&sign, fun_id),
|
|
params,
|
|
);
|
|
}
|
|
zelf
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
pub fn gen_func_instance<'ctx, 'a>(
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
obj: Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, &mut TopLevelDef, String),
|
|
id: usize,
|
|
) -> String {
|
|
if let (
|
|
sign,
|
|
TopLevelDef::Function {
|
|
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
|
|
},
|
|
key,
|
|
) = fun
|
|
{
|
|
instance_to_symbol.get(&key).cloned().unwrap_or_else(|| {
|
|
let symbol = format!("{}.{}", name, instance_to_symbol.len());
|
|
instance_to_symbol.insert(key.clone(), symbol.clone());
|
|
let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(var_id));
|
|
let instance = instance_to_stmt.get(&key).unwrap();
|
|
|
|
let mut store = ConcreteTypeStore::new();
|
|
let mut cache = HashMap::new();
|
|
|
|
let subst = sign
|
|
.vars
|
|
.iter()
|
|
.map(|(id, ty)| {
|
|
(
|
|
*instance.subst.get(id).unwrap(),
|
|
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
let mut signature =
|
|
store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
|
|
|
|
if let Some(obj) = &obj {
|
|
let zelf =
|
|
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
|
|
if let ConcreteTypeEnum::TFunc { args, .. } = &mut signature {
|
|
args.insert(
|
|
0,
|
|
ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None },
|
|
)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
let signature = store.add_cty(signature);
|
|
|
|
ctx.registry.add_task(CodeGenTask {
|
|
symbol_name: symbol.clone(),
|
|
body: instance.body.clone(),
|
|
resolver: resolver.as_ref().unwrap().clone(),
|
|
calls: instance.calls.clone(),
|
|
subst,
|
|
signature,
|
|
store,
|
|
unifier_index: instance.unifier_id,
|
|
id,
|
|
});
|
|
symbol
|
|
})
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
obj: Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
|
) -> Option<BasicValueEnum<'ctx>> {
|
|
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
|
|
|
|
let id;
|
|
let key;
|
|
let param_vals;
|
|
let symbol = {
|
|
// make sure this lock guard is dropped at the end of this scope...
|
|
let def = definition.read();
|
|
match &*def {
|
|
TopLevelDef::Function {
|
|
instance_to_symbol,
|
|
instance_to_stmt,
|
|
codegen_callback,
|
|
..
|
|
} => {
|
|
if let Some(callback) = codegen_callback {
|
|
// TODO: Change signature
|
|
let obj = obj.map(|(t, v)| (t, v.to_basic_value_enum(ctx, generator)));
|
|
let params = params
|
|
.into_iter()
|
|
.map(|(name, val)| (name, val.to_basic_value_enum(ctx, generator)))
|
|
.collect();
|
|
return callback.run(ctx, obj, fun, params);
|
|
}
|
|
let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None);
|
|
let mut keys = fun.0.args.clone();
|
|
let mut mapping = HashMap::new();
|
|
for (key, value) in params.into_iter() {
|
|
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
|
|
}
|
|
// default value handling
|
|
for k in keys.into_iter() {
|
|
mapping.insert(k.name, ctx.gen_symbol_val(&k.default_value.unwrap()).into());
|
|
}
|
|
// reorder the parameters
|
|
let mut real_params =
|
|
fun.0.args.iter().map(|arg| mapping.remove(&arg.name).unwrap()).collect_vec();
|
|
if let Some(obj) = &obj {
|
|
real_params.insert(0, obj.1.clone());
|
|
}
|
|
|
|
let static_params = real_params
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, v)| {
|
|
if let ValueEnum::Static(s) = v {
|
|
Some((i, s.clone()))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect_vec();
|
|
id = {
|
|
let ids = static_params
|
|
.iter()
|
|
.map(|(i, v)| (*i, v.get_unique_identifier()))
|
|
.collect_vec();
|
|
let mut store = ctx.static_value_store.lock();
|
|
match store.lookup.get(&ids) {
|
|
Some(index) => *index,
|
|
None => {
|
|
let length = store.store.len();
|
|
store.lookup.insert(ids, length);
|
|
store.store.push(static_params.into_iter().collect());
|
|
length
|
|
}
|
|
}
|
|
};
|
|
// special case: extern functions
|
|
key = if instance_to_stmt.is_empty() {
|
|
"".to_string()
|
|
} else {
|
|
format!("{}:{}", id, old_key)
|
|
};
|
|
param_vals = real_params
|
|
.into_iter()
|
|
.map(|p| p.to_basic_value_enum(ctx, generator).into())
|
|
.collect_vec();
|
|
instance_to_symbol.get(&key).cloned()
|
|
}
|
|
TopLevelDef::Class { .. } => {
|
|
return Some(generator.gen_constructor(ctx, fun.0, &*def, params))
|
|
}
|
|
}
|
|
}
|
|
.unwrap_or_else(|| {
|
|
generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id)
|
|
});
|
|
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
|
|
let mut args = fun.0.args.clone();
|
|
if let Some(obj) = &obj {
|
|
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
|
|
}
|
|
let params =
|
|
args.iter().map(|arg| ctx.get_llvm_type(generator, arg.ty).into()).collect_vec();
|
|
let fun_ty = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
|
|
ctx.ctx.void_type().fn_type(¶ms, false)
|
|
} else {
|
|
ctx.get_llvm_type(generator, fun.0.ret).fn_type(¶ms, false)
|
|
};
|
|
ctx.module.add_function(&symbol, fun_ty, None)
|
|
});
|
|
ctx.builder.build_call(fun_val, ¶m_vals, "call").try_as_basic_value().left()
|
|
}
|
|
|
|
pub fn destructure_range<'ctx, 'a>(
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
range: PointerValue<'ctx>,
|
|
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
|
|
let int32 = ctx.ctx.i32_type();
|
|
let start = ctx
|
|
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(0, false)])
|
|
.into_int_value();
|
|
let end = ctx
|
|
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(1, false)])
|
|
.into_int_value();
|
|
let step = ctx
|
|
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(2, false)])
|
|
.into_int_value();
|
|
(start, end, step)
|
|
}
|
|
|
|
pub fn allocate_list<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
ty: BasicTypeEnum<'ctx>,
|
|
length: IntValue<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
let arr_ptr = ctx.builder.build_array_alloca(ty, length, "tmparr");
|
|
let size_t = generator.get_size_type(ctx.ctx);
|
|
let i32_t = ctx.ctx.i32_type();
|
|
let arr_ty =
|
|
ctx.ctx.struct_type(&[ty.ptr_type(AddressSpace::Generic).into(), size_t.into()], false);
|
|
let zero = ctx.ctx.i32_type().const_zero();
|
|
let arr_str_ptr = ctx.builder.build_alloca(arr_ty, "tmparrstr");
|
|
unsafe {
|
|
let len_ptr = ctx.builder.build_in_bounds_gep(
|
|
arr_str_ptr,
|
|
&[zero, i32_t.const_int(1, false)],
|
|
"len_ptr",
|
|
);
|
|
let length = ctx.builder.build_int_z_extend(length, size_t, "zext");
|
|
ctx.builder.build_store(len_ptr, length);
|
|
let ptr_to_arr =
|
|
ctx.builder.build_in_bounds_gep(arr_str_ptr, &[zero, i32_t.const_zero()], "ptr_to_arr");
|
|
ctx.builder.build_store(ptr_to_arr, arr_ptr);
|
|
arr_str_ptr
|
|
}
|
|
}
|
|
|
|
pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if let ExprKind::ListComp { elt, generators } = &expr.node {
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let test_bb = ctx.ctx.append_basic_block(current, "test");
|
|
let body_bb = ctx.ctx.append_basic_block(current, "body");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
|
|
let Comprehension { target, iter, ifs, .. } = &generators[0];
|
|
let iter_val = generator.gen_expr(ctx, iter).unwrap().to_basic_value_enum(ctx, generator);
|
|
let int32 = ctx.ctx.i32_type();
|
|
let size_t = generator.get_size_type(ctx.ctx);
|
|
let zero_size_t = size_t.const_zero();
|
|
let zero_32 = int32.const_zero();
|
|
|
|
let index = generator.gen_var_alloc(ctx, size_t.into());
|
|
ctx.builder.build_store(index, zero_size_t);
|
|
|
|
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
|
|
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
|
|
let list;
|
|
let list_content;
|
|
|
|
if is_range {
|
|
let iter_val = iter_val.into_pointer_value();
|
|
let (start, end, step) = destructure_range(ctx, iter_val);
|
|
let diff = ctx.builder.build_int_sub(end, start, "diff");
|
|
// add 1 to the length as the value is rounded to zero
|
|
// the length may be 1 more than the actual length if the division is exact, but the
|
|
// length is a upper bound only anyway so it does not matter.
|
|
let length = ctx.builder.build_int_signed_div(diff, step, "div");
|
|
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1");
|
|
// in case length is non-positive
|
|
let is_valid =
|
|
ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, length, zero_32, "check");
|
|
let normal = ctx.ctx.append_basic_block(current, "normal_list");
|
|
let empty = ctx.ctx.append_basic_block(current, "empty_list");
|
|
let list_init = ctx.ctx.append_basic_block(current, "list_init");
|
|
ctx.builder.build_conditional_branch(is_valid, normal, empty);
|
|
// normal: allocate a list
|
|
ctx.builder.position_at_end(normal);
|
|
let list_a = allocate_list(
|
|
generator,
|
|
ctx,
|
|
elem_ty,
|
|
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len"),
|
|
);
|
|
ctx.builder.build_unconditional_branch(list_init);
|
|
ctx.builder.position_at_end(empty);
|
|
let list_b = allocate_list(generator, ctx, elem_ty, zero_size_t);
|
|
ctx.builder.build_unconditional_branch(list_init);
|
|
ctx.builder.position_at_end(list_init);
|
|
let phi = ctx.builder.build_phi(list_a.get_type(), "phi");
|
|
phi.add_incoming(&[(&list_a, normal), (&list_b, empty)]);
|
|
list = phi.as_basic_value().into_pointer_value();
|
|
list_content =
|
|
ctx.build_gep_and_load(list, &[zero_size_t, zero_32]).into_pointer_value();
|
|
|
|
let i = generator.gen_store_target(ctx, target);
|
|
ctx.builder.build_store(i, ctx.builder.build_int_sub(start, step, "start_init"));
|
|
ctx.builder.build_unconditional_branch(test_bb);
|
|
ctx.builder.position_at_end(test_bb);
|
|
let sign =
|
|
ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, step, zero_32, "sign");
|
|
// add and test
|
|
let tmp = ctx.builder.build_int_add(
|
|
ctx.builder.build_load(i, "i").into_int_value(),
|
|
step,
|
|
"start_loop",
|
|
);
|
|
ctx.builder.build_store(i, tmp);
|
|
// if step > 0, continue when i < end
|
|
let cmp1 = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, end, "cmp1");
|
|
// if step < 0, continue when i > end
|
|
let cmp2 = ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, tmp, end, "cmp2");
|
|
let pos = ctx.builder.build_and(sign, cmp1, "pos");
|
|
let neg = ctx.builder.build_and(ctx.builder.build_not(sign, "inv"), cmp2, "neg");
|
|
ctx.builder.build_conditional_branch(
|
|
ctx.builder.build_or(pos, neg, "or"),
|
|
body_bb,
|
|
cont_bb,
|
|
);
|
|
ctx.builder.position_at_end(body_bb);
|
|
} else {
|
|
let length = ctx
|
|
.build_gep_and_load(
|
|
iter_val.into_pointer_value(),
|
|
&[zero_size_t, int32.const_int(1, false)],
|
|
)
|
|
.into_int_value();
|
|
list = allocate_list(generator, ctx, elem_ty, length);
|
|
list_content =
|
|
ctx.build_gep_and_load(list, &[zero_size_t, zero_32]).into_pointer_value();
|
|
let counter = generator.gen_var_alloc(ctx, size_t.into());
|
|
// counter = -1
|
|
ctx.builder.build_store(counter, size_t.const_int(u64::max_value(), true));
|
|
ctx.builder.build_unconditional_branch(test_bb);
|
|
ctx.builder.position_at_end(test_bb);
|
|
let tmp = ctx.builder.build_load(counter, "i").into_int_value();
|
|
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc");
|
|
ctx.builder.build_store(counter, tmp);
|
|
let cmp = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, length, "cmp");
|
|
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb);
|
|
ctx.builder.position_at_end(body_bb);
|
|
let arr_ptr = ctx
|
|
.build_gep_and_load(iter_val.into_pointer_value(), &[zero_size_t, zero_32])
|
|
.into_pointer_value();
|
|
let val = ctx.build_gep_and_load(arr_ptr, &[tmp]);
|
|
generator.gen_assign(ctx, target, val.into());
|
|
}
|
|
for cond in ifs.iter() {
|
|
let result = generator
|
|
.gen_expr(ctx, cond)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
let succ = ctx.ctx.append_basic_block(current, "then");
|
|
ctx.builder.build_conditional_branch(result, succ, test_bb);
|
|
ctx.builder.position_at_end(succ);
|
|
}
|
|
let elem = generator.gen_expr(ctx, elt).unwrap();
|
|
let i = ctx.builder.build_load(index, "i").into_int_value();
|
|
let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") };
|
|
let val = elem.to_basic_value_enum(ctx, generator);
|
|
ctx.builder.build_store(elem_ptr, val);
|
|
ctx.builder
|
|
.build_store(index, ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc"));
|
|
ctx.builder.build_unconditional_branch(test_bb);
|
|
ctx.builder.position_at_end(cont_bb);
|
|
let len_ptr = unsafe {
|
|
ctx.builder.build_gep(list, &[zero_size_t, int32.const_int(1, false)], "length")
|
|
};
|
|
ctx.builder.build_store(len_ptr, ctx.builder.build_load(index, "index"));
|
|
list.into()
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
left: &Expr<Option<Type>>,
|
|
op: &Operator,
|
|
right: &Expr<Option<Type>>,
|
|
) -> ValueEnum<'ctx> {
|
|
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
|
|
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
|
|
let left = generator.gen_expr(ctx, left).unwrap().to_basic_value_enum(ctx, generator);
|
|
let right = generator.gen_expr(ctx, right).unwrap().to_basic_value_enum(ctx, generator);
|
|
|
|
// we can directly compare the types, because we've got their representatives
|
|
// which would be unchanged until further unification, which we would never do
|
|
// when doing code generation for function instances
|
|
if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
|
|
ctx.gen_int_ops(op, left, right)
|
|
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
|
|
ctx.gen_float_ops(op, left, right)
|
|
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
|
|
// Pow is the only operator that would pass typecheck between float and int
|
|
assert!(*op == Operator::Pow);
|
|
// TODO: throw exception when rhs is out of i16 bound
|
|
// since llvm intrinsic only support to i16 for f64
|
|
let i16_t = ctx.ctx.i16_type();
|
|
let pow_intr = ctx.module.get_function("llvm.powi.f64.i16").unwrap_or_else(|| {
|
|
let f64_t = ctx.ctx.f64_type();
|
|
let ty = f64_t.fn_type(&[f64_t.into(), i16_t.into()], false);
|
|
ctx.module.add_function("llvm.powi.f64.i16", ty, None)
|
|
});
|
|
let right = ctx.builder.build_int_truncate(right.into_int_value(), i16_t, "r_pow");
|
|
ctx.builder
|
|
.build_call(pow_intr, &[left.into(), right.into()], "f_pow_i")
|
|
.try_as_basic_value()
|
|
.unwrap_left()
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
.into()
|
|
}
|
|
|
|
pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
|
|
generator: &mut G,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
expr: &Expr<Option<Type>>,
|
|
) -> Option<ValueEnum<'ctx>> {
|
|
let int32 = ctx.ctx.i32_type();
|
|
let zero = int32.const_int(0, false);
|
|
Some(match &expr.node {
|
|
ExprKind::Constant { value, .. } => {
|
|
let ty = expr.custom.unwrap();
|
|
ctx.gen_const(value, ty).into()
|
|
}
|
|
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
|
|
Some((ptr, None, _)) => ctx.builder.build_load(*ptr, "load").into(),
|
|
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
|
|
None => {
|
|
let resolver = ctx.resolver.clone();
|
|
let val = resolver.get_symbol_value(*id, ctx).unwrap();
|
|
// if is tuple, need to deref it to handle tuple as value
|
|
if let (TypeEnum::TTuple { .. }, BasicValueEnum::PointerValue(ptr)) = (
|
|
&*ctx.unifier.get_ty(expr.custom.unwrap()),
|
|
resolver
|
|
.get_symbol_value(*id, ctx)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator),
|
|
) {
|
|
ctx.builder.build_load(ptr, "tup_val").into()
|
|
} else {
|
|
val
|
|
}
|
|
}
|
|
},
|
|
ExprKind::List { elts, .. } => {
|
|
// this shall be optimized later for constant primitive lists...
|
|
// we should use memcpy for that instead of generating thousands of stores
|
|
let elements = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x).unwrap().to_basic_value_enum(ctx, generator))
|
|
.collect_vec();
|
|
let ty = if elements.is_empty() {
|
|
if let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(expr.custom.unwrap()) {
|
|
ctx.get_llvm_type(generator, *ty)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
} else {
|
|
elements[0].get_type()
|
|
};
|
|
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
|
|
let arr_str_ptr = allocate_list(generator, ctx, ty, length);
|
|
let arr_ptr = ctx.build_gep_and_load(arr_str_ptr, &[zero, zero]).into_pointer_value();
|
|
unsafe {
|
|
for (i, v) in elements.iter().enumerate() {
|
|
let elem_ptr = ctx.builder.build_gep(
|
|
arr_ptr,
|
|
&[int32.const_int(i as u64, false)],
|
|
"elem_ptr",
|
|
);
|
|
ctx.builder.build_store(elem_ptr, *v);
|
|
}
|
|
}
|
|
arr_str_ptr.into()
|
|
}
|
|
ExprKind::Tuple { elts, .. } => {
|
|
let element_val = elts
|
|
.iter()
|
|
.map(|x| generator.gen_expr(ctx, x).unwrap().to_basic_value_enum(ctx, generator))
|
|
.collect_vec();
|
|
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
|
|
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
|
|
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple");
|
|
for (i, v) in element_val.into_iter().enumerate() {
|
|
unsafe {
|
|
let ptr = ctx.builder.build_in_bounds_gep(
|
|
tuple_ptr,
|
|
&[zero, int32.const_int(i as u64, false)],
|
|
"ptr",
|
|
);
|
|
ctx.builder.build_store(ptr, v);
|
|
}
|
|
}
|
|
ctx.builder.build_load(tuple_ptr, "tup_val").into()
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
// note that we would handle class methods directly in calls
|
|
match generator.gen_expr(ctx, value).unwrap() {
|
|
ValueEnum::Static(v) => v.get_field(*attr, ctx).unwrap_or_else(|| {
|
|
let v = v.to_basic_value_enum(ctx, generator);
|
|
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
))
|
|
}),
|
|
ValueEnum::Dynamic(v) => {
|
|
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
|
|
ValueEnum::Dynamic(ctx.build_gep_and_load(
|
|
v.into_pointer_value(),
|
|
&[zero, int32.const_int(index as u64, false)],
|
|
))
|
|
}
|
|
}
|
|
}
|
|
ExprKind::BoolOp { op, values } => {
|
|
// requires conditional branches for short-circuiting...
|
|
let left = generator
|
|
.gen_expr(ctx, &values[0])
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let a_bb = ctx.ctx.append_basic_block(current, "a");
|
|
let b_bb = ctx.ctx.append_basic_block(current, "b");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(left, a_bb, b_bb);
|
|
let (a, b) = match op {
|
|
Boolop::Or => {
|
|
ctx.builder.position_at_end(a_bb);
|
|
let a = ctx.ctx.bool_type().const_int(1, false);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
ctx.builder.position_at_end(b_bb);
|
|
let b = generator
|
|
.gen_expr(ctx, &values[1])
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
(a, b)
|
|
}
|
|
Boolop::And => {
|
|
ctx.builder.position_at_end(a_bb);
|
|
let a = generator
|
|
.gen_expr(ctx, &values[1])
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
ctx.builder.position_at_end(b_bb);
|
|
let b = ctx.ctx.bool_type().const_int(0, false);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
(a, b)
|
|
}
|
|
};
|
|
ctx.builder.position_at_end(cont_bb);
|
|
let phi = ctx.builder.build_phi(ctx.ctx.bool_type(), "phi");
|
|
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
|
|
phi.as_basic_value().into()
|
|
}
|
|
ExprKind::BinOp { op, left, right } => gen_binop_expr(generator, ctx, left, op, right),
|
|
ExprKind::UnaryOp { op, operand } => {
|
|
let ty = ctx.unifier.get_representative(operand.custom.unwrap());
|
|
let val = generator.gen_expr(ctx, operand).unwrap().to_basic_value_enum(ctx, generator);
|
|
if ty == ctx.primitives.bool {
|
|
let val = val.into_int_value();
|
|
match op {
|
|
ast::Unaryop::Invert | ast::Unaryop::Not => {
|
|
ctx.builder.build_not(val, "not").into()
|
|
}
|
|
_ => val.into(),
|
|
}
|
|
} else if [ctx.primitives.int32, ctx.primitives.int64].contains(&ty) {
|
|
let val = val.into_int_value();
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").into(),
|
|
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").into(),
|
|
ast::Unaryop::Not => ctx
|
|
.builder
|
|
.build_int_compare(
|
|
inkwell::IntPredicate::EQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.into(),
|
|
_ => val.into(),
|
|
}
|
|
} else if ty == ctx.primitives.float {
|
|
let val =
|
|
if let BasicValueEnum::FloatValue(val) = val { val } else { unreachable!() };
|
|
match op {
|
|
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").into(),
|
|
ast::Unaryop::Not => ctx
|
|
.builder
|
|
.build_float_compare(
|
|
inkwell::FloatPredicate::OEQ,
|
|
val,
|
|
val.get_type().const_zero(),
|
|
"not",
|
|
)
|
|
.into(),
|
|
_ => val.into(),
|
|
}
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
ExprKind::Compare { left, ops, comparators } => {
|
|
izip!(chain(once(left.as_ref()), comparators.iter()), comparators.iter(), ops.iter(),)
|
|
.fold(None, |prev, (lhs, rhs, op)| {
|
|
let ty = ctx.unifier.get_representative(lhs.custom.unwrap());
|
|
let current =
|
|
if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.bool]
|
|
.contains(&ty)
|
|
{
|
|
let (lhs, rhs) = if let (
|
|
BasicValueEnum::IntValue(lhs),
|
|
BasicValueEnum::IntValue(rhs),
|
|
) = (
|
|
generator
|
|
.gen_expr(ctx, lhs)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator),
|
|
generator
|
|
.gen_expr(ctx, rhs)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator),
|
|
) {
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
|
|
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
|
|
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
|
|
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
|
|
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
|
|
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.builder.build_int_compare(op, lhs, rhs, "cmp")
|
|
} else if ty == ctx.primitives.float {
|
|
let (lhs, rhs) = if let (
|
|
BasicValueEnum::FloatValue(lhs),
|
|
BasicValueEnum::FloatValue(rhs),
|
|
) = (
|
|
generator
|
|
.gen_expr(ctx, lhs)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator),
|
|
generator
|
|
.gen_expr(ctx, rhs)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator),
|
|
) {
|
|
(lhs, rhs)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let op = match op {
|
|
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
|
|
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
|
|
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
|
|
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
|
|
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
|
|
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.builder.build_float_compare(op, lhs, rhs, "cmp")
|
|
} else {
|
|
unimplemented!()
|
|
};
|
|
prev.map(|v| ctx.builder.build_and(v, current, "cmp")).or(Some(current))
|
|
})
|
|
.unwrap()
|
|
.into() // as there should be at least 1 element, it should never be none
|
|
}
|
|
ExprKind::IfExp { test, body, orelse } => {
|
|
let test = generator
|
|
.gen_expr(ctx, test)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
|
let then_bb = ctx.ctx.append_basic_block(current, "then");
|
|
let else_bb = ctx.ctx.append_basic_block(current, "else");
|
|
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
|
ctx.builder.build_conditional_branch(test, then_bb, else_bb);
|
|
ctx.builder.position_at_end(then_bb);
|
|
let a = generator.gen_expr(ctx, body).unwrap().to_basic_value_enum(ctx, generator);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
ctx.builder.position_at_end(else_bb);
|
|
let b = generator.gen_expr(ctx, orelse).unwrap().to_basic_value_enum(ctx, generator);
|
|
ctx.builder.build_unconditional_branch(cont_bb);
|
|
ctx.builder.position_at_end(cont_bb);
|
|
let phi = ctx.builder.build_phi(a.get_type(), "ifexpr");
|
|
phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]);
|
|
phi.as_basic_value().into()
|
|
}
|
|
ExprKind::Call { func, args, keywords } => {
|
|
let mut params =
|
|
args.iter().map(|arg| (None, generator.gen_expr(ctx, arg).unwrap())).collect_vec();
|
|
let kw_iter = keywords.iter().map(|kw| {
|
|
(
|
|
Some(*kw.node.arg.as_ref().unwrap()),
|
|
generator.gen_expr(ctx, &kw.node.value).unwrap(),
|
|
)
|
|
});
|
|
params.extend(kw_iter);
|
|
let call = ctx.calls.get(&expr.location.into());
|
|
let signature = match call {
|
|
Some(call) => ctx.unifier.get_call_signature(*call).unwrap(),
|
|
None => {
|
|
let ty = func.custom.unwrap();
|
|
if let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) {
|
|
sign.borrow().clone()
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
};
|
|
match &func.as_ref().node {
|
|
ExprKind::Name { id, .. } => {
|
|
// TODO: handle primitive casts and function pointers
|
|
let fun = ctx.resolver.get_identifier_def(*id).expect("Unknown identifier");
|
|
return generator
|
|
.gen_call(ctx, None, (&signature, fun), params)
|
|
.map(|v| v.into());
|
|
}
|
|
ExprKind::Attribute { value, attr, .. } => {
|
|
let val = generator.gen_expr(ctx, value).unwrap();
|
|
let id = if let TypeEnum::TObj { obj_id, .. } =
|
|
&*ctx.unifier.get_ty(value.custom.unwrap())
|
|
{
|
|
*obj_id
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let fun_id = {
|
|
let defs = ctx.top_level.definitions.read();
|
|
let obj_def = defs.get(id.0).unwrap().read();
|
|
if let TopLevelDef::Class { methods, .. } = &*obj_def {
|
|
let mut fun_id = None;
|
|
for (name, _, id) in methods.iter() {
|
|
if name == attr {
|
|
fun_id = Some(*id);
|
|
}
|
|
}
|
|
fun_id.unwrap()
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
};
|
|
return generator
|
|
.gen_call(
|
|
ctx,
|
|
Some((value.custom.unwrap(), val)),
|
|
(&signature, fun_id),
|
|
params,
|
|
)
|
|
.map(|v| v.into());
|
|
}
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
ExprKind::Subscript { value, slice, .. } => {
|
|
if let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(value.custom.unwrap()) {
|
|
let v = generator
|
|
.gen_expr(ctx, value)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_pointer_value();
|
|
let ty = ctx.get_llvm_type(generator, *ty);
|
|
let arr_ptr = ctx.build_gep_and_load(v, &[zero, zero]).into_pointer_value();
|
|
if let ExprKind::Slice { lower, upper, step } = &slice.node {
|
|
let one = int32.const_int(1, false);
|
|
let (start, end, step) =
|
|
handle_slice_indices(lower, upper, step, ctx, generator, v);
|
|
let length = calculate_len_for_slice_range(
|
|
ctx,
|
|
start,
|
|
ctx.builder
|
|
.build_select(
|
|
ctx.builder.build_int_compare(
|
|
inkwell::IntPredicate::SLT,
|
|
step,
|
|
zero,
|
|
"is_neg",
|
|
),
|
|
ctx.builder.build_int_sub(end, one, "e_min_one"),
|
|
ctx.builder.build_int_add(end, one, "e_add_one"),
|
|
"final_e",
|
|
)
|
|
.into_int_value(),
|
|
step,
|
|
);
|
|
let res_array_ret = allocate_list(generator, ctx, ty, length);
|
|
let res_ind =
|
|
handle_slice_indices(&None, &None, &None, ctx, generator, res_array_ret);
|
|
list_slice_assignment(
|
|
ctx,
|
|
generator.get_size_type(ctx.ctx),
|
|
ty,
|
|
res_array_ret,
|
|
res_ind,
|
|
v,
|
|
(start, end, step),
|
|
);
|
|
res_array_ret.into()
|
|
} else {
|
|
// TODO: bound check
|
|
let index = generator
|
|
.gen_expr(ctx, slice)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_int_value();
|
|
ctx.build_gep_and_load(arr_ptr, &[index])
|
|
}
|
|
} else if let TypeEnum::TTuple { .. } = &*ctx.unifier.get_ty(value.custom.unwrap()) {
|
|
let v = generator
|
|
.gen_expr(ctx, value)
|
|
.unwrap()
|
|
.to_basic_value_enum(ctx, generator)
|
|
.into_struct_value();
|
|
let index: u32 =
|
|
if let ExprKind::Constant { value: ast::Constant::Int(v), .. } = &slice.node {
|
|
v.unwrap().try_into().unwrap()
|
|
} else {
|
|
unreachable!("tuple subscript must be const int after type check");
|
|
};
|
|
ctx.builder.build_extract_value(v, index, "tup_elem").unwrap()
|
|
} else {
|
|
unreachable!("should not be other subscriptable types after type check");
|
|
}
|
|
}
|
|
.into(),
|
|
ExprKind::ListComp { .. } => gen_comprehension(generator, ctx, expr).into(),
|
|
_ => unimplemented!(),
|
|
})
|
|
}
|