nac3_sca/nac3core/irrt/irrt/ndarray/broadcast.hpp
David Mak 43e440d2fd [core] codegen/ndarray: Reimplement broadcasting
Based on 9359ed96: core/ndstrides: implement broadcasting &
np_broadcast_to()
2025-01-03 15:14:59 +08:00

165 lines
6.2 KiB
C++

#pragma once
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace {
namespace ndarray::broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
#ifdef IRRT_DEBUG_ASSERT
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
#endif
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace ndarray::broadcast
} // namespace
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}