nac3_sca/nac3core/src/top_level.rs

677 lines
29 KiB
Rust

use std::borrow::BorrowMut;
use std::ops::Deref;
use std::{collections::HashMap, collections::HashSet, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
use crate::symbol_resolver::SymbolResolver;
use crate::typecheck::typedef::{FunSignature, FuncArg};
use itertools::chain;
use parking_lot::{Mutex, RwLock};
use rustpython_parser::ast::{self, Stmt};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct DefinitionId(pub usize);
pub enum TopLevelDef {
Class {
// object ID used for TypeEnum
object_id: DefinitionId,
// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<DefinitionId>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Initializer {
class_id: DefinitionId,
},
}
impl TopLevelDef {
fn get_function_type(&self) -> Result<Type, String> {
if let Self::Function { signature, .. } = self {
Ok(*signature)
} else {
Err("only expect function def here".into())
}
}
}
pub struct TopLevelContext {
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
}
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
// list of top level ast, the index is same as the field `definition_list`
pub ast_list: Vec<Option<ast::Stmt<()>>>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: Unifier,
// primitive store
pub primitives: PrimitiveStore,
// mangled class method name to def_id
pub class_method_to_def_id: HashMap<String, DefinitionId>,
// record the def id of the classes whoses fields and methods are to be analyzed
pub to_be_analyzed_class: Vec<DefinitionId>,
}
impl TopLevelComposer {
pub fn to_top_level_context(&self) -> TopLevelContext {
TopLevelContext {
definitions: self.definition_list.clone(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
fn name_mangling(mut class_name: String, method_name: &str) -> String {
class_name.push_str(method_name);
class_name
}
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
let primitives = Self::make_primitives();
let top_level_def_list = vec![
RwLock::new(Self::make_top_level_class_def(0, None)),
RwLock::new(Self::make_top_level_class_def(1, None)),
RwLock::new(Self::make_top_level_class_def(2, None)),
RwLock::new(Self::make_top_level_class_def(3, None)),
RwLock::new(Self::make_top_level_class_def(4, None)),
];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
let composer = TopLevelComposer {
definition_list: RwLock::new(top_level_def_list).into(),
ast_list,
primitives: primitives.0,
unifier: primitives.1.into(),
class_method_to_def_id: Default::default(),
to_be_analyzed_class: Default::default(),
};
(
vec![
("int32".into(), DefinitionId(0), composer.primitives.int32),
("int64".into(), DefinitionId(1), composer.primitives.int64),
("float".into(), DefinitionId(2), composer.primitives.float),
("bool".into(), DefinitionId(3), composer.primitives.bool),
("none".into(), DefinitionId(4), composer.primitives.none),
],
composer,
)
}
/// already include the definition_id of itself inside the ancestors vector
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: vec![DefinitionId(index)],
resolver,
}
}
/// when first registering, the type is a invalid value
pub fn make_top_level_function_def(
name: String,
ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver,
}
}
/// step 0, register, just remeber the names of top level classes/function
pub fn register_top_level(
&mut self,
ast: ast::Stmt<()>,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId), String> {
let (mut def_list, ast_list) = (self.definition_list.write(), &mut self.ast_list);
assert_eq!(def_list.len(), ast_list.len());
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string();
let class_def_id = def_list.len();
// add the class to the definition lists
def_list
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
// since later when registering class method, ast will still be used,
// here push None temporarly, later will move the ast inside
ast_list.push(None);
// parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves
// by using `class_method_to_def_id`
for b in body {
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
let fun_name = Self::name_mangling(class_name.clone(), name);
let def_id = def_list.len();
// add to the definition list
def_list.push(
Self::make_top_level_function_def(
fun_name.clone(),
self.unifier.add_ty(TypeEnum::TFunc(
FunSignature {
args: Default::default(),
ret: self.primitives.none,
vars: Default::default(),
}
.into(),
)),
resolver.clone(),
)
.into(),
);
// the ast of class method is in the class, push None in to the list here
ast_list.push(None);
// class method, do not let the symbol manager manage it, use our own map
self.class_method_to_def_id.insert(fun_name, DefinitionId(def_id));
}
}
// move the ast to the entry of the class in the ast_list
ast_list[class_def_id] = Some(ast);
// put the constructor into the def_list
def_list
.push(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }.into());
ast_list.push(None);
// class, put its def_id into the to be analyzed set
let to_be_analyzed = &mut self.to_be_analyzed_class;
to_be_analyzed.push(DefinitionId(class_def_id));
Ok((class_name, DefinitionId(class_def_id)))
}
ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string();
// add to the definition list
def_list.push(
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
.into(),
);
ast_list.push(Some(ast));
// return
Ok((fun_name, DefinitionId(def_list.len() - 1)))
}
_ => Err("only registrations of top level classes/functions are supprted".into()),
}
}
/// step 1, analyze the type vars associated with top level class
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = &self.ast_list;
let converted_top_level = &self.to_top_level_context();
let primitives = &self.primitives;
let unifier = &mut self.unifier;
for (class_def, class_ast) in def_list
.iter_mut()
.zip(ast_list.iter())
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>()
{
// only deal with class def here
let (class_bases, class_def_type_vars, class_resolver) = {
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.get_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, type_vars, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let mut is_generic = false;
for b in class_bases {
match &b.node {
// analyze typevars bounded to the class,
// only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "Generic")
} =>
{
if !is_generic {
is_generic = true;
} else {
return Err("Only single Generic[...] can be in bases".into());
}
// if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
// parse the type vars
let type_vars = elts
.iter()
.map(|e| {
class_resolver.as_ref().unwrap().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
e,
)
})
.collect::<Result<Vec<_>, _>>()?;
// check if all are unique type vars
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
let all_unique_type_var = type_vars.iter().all(|x| {
let ty = unifier.get_ty(*x);
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
occured_type_var_id.insert(*id)
} else {
false
}
});
if !all_unique_type_var {
return Err("expect unique type variables".into());
}
// add to TopLevelDef
class_def_type_vars.extend(type_vars);
// `class A(Generic[T])`
} else {
let ty =
class_resolver.as_ref().unwrap().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
&slice,
)?;
// check if it is type var
let is_type_var =
matches!(unifier.get_ty(ty).as_ref(), &TypeEnum::TVar { .. });
if !is_type_var {
return Err("expect type variable here".into());
}
// add to TopLevelDef
class_def_type_vars.push(ty);
}
}
// if others, do nothing in this function
_ => continue,
}
}
}
Ok(())
}
/// step 2, base classes. Need to separate step1 and step2 for this reason:
/// `class B(Generic[T, V]);
/// class A(B[int, bool])`
/// if the type var associated with class `B` has not been handled properly,
/// the parse of type annotation of `B[int, bool]` will fail
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = &self.ast_list;
let converted_top_level = &self.to_top_level_context();
let primitives = &self.primitives;
let unifier = &mut self.unifier;
for (class_def, class_ast) in def_list
.iter_mut()
.zip(ast_list.iter())
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>()
{
let (class_bases, class_ancestors, class_resolver) = {
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.get_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, ancestors, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
for b in class_bases {
// type vars have already been handled, so skip on `Generic[...]`
if let ast::ExprKind::Subscript { value, .. } = &b.node {
if let ast::ExprKind::Name { id, .. } = &value.node {
if id == "Generic" {
continue;
}
}
}
// get the def id of the base class
let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
b,
)?;
let base_id =
if let TypeEnum::TObj { obj_id, .. } = unifier.get_ty(base_ty).as_ref() {
*obj_id
} else {
return Err("expect concrete class/type to be base class".into());
};
// write to the class ancestors
class_ancestors.push(base_id);
}
}
Ok(())
}
/// step 3, class fields and methods
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = &self.ast_list;
let converted_top_level = &self.to_top_level_context();
let class_method_to_def_id = &self.class_method_to_def_id;
let primitives = &self.primitives;
let to_be_analyzed_class = &mut self.to_be_analyzed_class;
let unifier = &mut self.unifier;
while !to_be_analyzed_class.is_empty() {
let class_ind = to_be_analyzed_class.remove(0).0;
let (class_name, class_body) = {
let class_ast = &ast_list[class_ind];
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. }, ..
}) = class_ast
{
(name, body)
} else {
unreachable!("should be class def ast")
}
};
let class_methods_parsing_result: Vec<(String, Type, DefinitionId)> =
Default::default();
let class_fields_parsing_result: Vec<(String, Type)> = Default::default();
for b in class_body {
if let ast::StmtKind::FunctionDef {
args: method_args_ast,
body: method_body_ast,
name: method_name,
returns: method_returns_ast,
..
} = &b.node
{
let (class_def, method_def) = {
// unwrap should not fail
let method_ind = class_method_to_def_id
.get(&Self::name_mangling(class_name.into(), method_name))
.unwrap()
.0;
// split the def_list to two parts to get the
// mutable reference to both the method and the class
assert_ne!(method_ind, class_ind);
let min_ind =
(if method_ind > class_ind { class_ind } else { method_ind }) + 1;
let (head_slice, tail_slice) = def_list.split_at_mut(min_ind);
let (new_method_ind, new_class_ind) = (
if method_ind >= min_ind { method_ind - min_ind } else { method_ind },
if class_ind >= min_ind { class_ind - min_ind } else { class_ind },
);
if new_class_ind == class_ind {
(&mut head_slice[new_class_ind], &mut tail_slice[new_method_ind])
} else {
(&mut tail_slice[new_class_ind], &mut head_slice[new_method_ind])
}
};
let (class_fields, class_methods, class_resolver) = {
if let TopLevelDef::Class { resolver, fields, methods, .. } =
class_def.get_mut()
{
(fields, methods, resolver)
} else {
unreachable!("must be class def here")
}
};
let arg_tys = method_args_ast
.args
.iter()
.map(|x| -> Result<Type, String> {
if x.node.arg != "self" {
let annotation = x
.node
.annotation
.as_ref()
.ok_or_else(|| {
"type annotation for function parameter is needed".to_string()
})?
.as_ref();
let ty =
class_resolver.as_ref().unwrap().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
annotation,
)?;
Ok(ty)
} else {
// TODO: handle self, how
unimplemented!()
}
})
.collect::<Result<Vec<_>, _>>()?;
let ret_ty = if method_name != "__init__" {
method_returns_ast
.as_ref()
.map(|x|
class_resolver.as_ref().unwrap().lock().parse_type_annotation(
converted_top_level,
unifier.borrow_mut(),
primitives,
x.as_ref(),
)
)
.ok_or_else(|| "return type annotation needed".to_string())??
} else {
// TODO: self type, how
unimplemented!()
};
// handle fields
if method_name == "__init__" {
for body in method_body_ast {
match &body.node {
ast::StmtKind::AnnAssign {
target,
annotation,
..
} if {
if let ast::ExprKind::Attribute {
value,
attr,
..
} = &target.node {
if let ast::ExprKind::Name {id, ..} = &value.node {
id == "self"
} else { false }
} else { false }
} => {
// TODO: record this field with its type
},
// TODO: exclude those without type annotation
ast::StmtKind::Assign {
targets,
..
} if {
if let ast::ExprKind::Attribute {
value,
attr,
..
} = &targets[0].node {
if let ast::ExprKind::Name {id, ..} = &value.node {
id == "self"
} else { false }
} else { false }
} => {
unimplemented!()
},
// do nothing
_ => { }
}
}
}
let all_tys_ok = {
let ret_ty_iter = vec![ret_ty];
let ret_ty_iter = ret_ty_iter.iter();
let mut all_tys = chain!(arg_tys.iter(), ret_ty_iter);
all_tys.all(|x| {
let type_enum = unifier.get_ty(*x);
match type_enum.as_ref() {
TypeEnum::TObj { obj_id, .. } => {
!to_be_analyzed_class.contains(obj_id)
}
TypeEnum::TVirtual { ty } => {
if let TypeEnum::TObj { obj_id, .. } =
unifier.get_ty(*ty).as_ref()
{
!to_be_analyzed_class.contains(obj_id)
} else {
unreachable!()
}
}
TypeEnum::TVar { .. } => true,
_ => unreachable!(),
}
})
};
if all_tys_ok {
// TODO: put related value to the `class_methods_parsing_result`
unimplemented!()
} else {
to_be_analyzed_class.push(DefinitionId(class_ind));
// TODO: go to the next WHILE loop
unimplemented!()
}
} else {
// what should we do with `class A: a = 3`?
continue;
}
}
// TODO: now it should be confirmed that every
// methods and fields of the class can be correctly typed, put the results
// into the actual def_list and the unifier
}
Ok(())
}
fn analyze_top_level_inheritance(&mut self) -> Result<(), String> {
unimplemented!()
}
fn analyze_top_level_function(&mut self) -> Result<(), String> {
unimplemented!()
}
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
unimplemented!()
}
}