nac3_sca/nac3core/src/symbol_resolver.rs

527 lines
19 KiB
Rust

use std::fmt::Debug;
use std::sync::Arc;
use std::{collections::HashMap, fmt::Display};
use std::rc::Rc;
use crate::typecheck::typedef::TypeEnum;
use crate::{
codegen::CodeGenContext,
toplevel::{DefinitionId, TopLevelDef, type_annotation::TypeAnnotation},
};
use crate::{
codegen::CodeGenerator,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, Unifier},
},
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue {
I32(i32),
I64(i64),
U32(u32),
U64(u64),
Str(String),
Double(f64),
Bool(bool),
Tuple(Vec<SymbolValue>),
OptionSome(Box<SymbolValue>),
OptionNone,
}
impl SymbolValue {
/// Creates a [SymbolValue] from a [Constant].
///
/// * `constant` - The constant to create the value from.
/// * `expected_ty` - The expected type of the [SymbolValue].
pub fn from_constant(
constant: &Constant,
expected_ty: Type,
primitives: &PrimitiveStore,
unifier: &mut Unifier
) -> Result<Self, String> {
match constant {
Constant::None => {
if unifier.unioned(expected_ty, primitives.option) {
Ok(SymbolValue::OptionNone)
} else {
Err(format!("Expected {:?}, but got Option", expected_ty))
}
}
Constant::Bool(b) => {
if unifier.unioned(expected_ty, primitives.bool) {
Ok(SymbolValue::Bool(*b))
} else {
Err(format!("Expected {:?}, but got bool", expected_ty))
}
}
Constant::Str(s) => {
if unifier.unioned(expected_ty, primitives.str) {
Ok(SymbolValue::Str(s.to_string()))
} else {
Err(format!("Expected {:?}, but got str", expected_ty))
}
},
Constant::Int(i) => {
if unifier.unioned(expected_ty, primitives.int32) {
i32::try_from(*i)
.map(|val| SymbolValue::I32(val))
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.int64) {
i64::try_from(*i)
.map(|val| SymbolValue::I64(val))
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint32) {
u32::try_from(*i)
.map(|val| SymbolValue::U32(val))
.map_err(|e| e.to_string())
} else if unifier.unioned(expected_ty, primitives.uint64) {
u64::try_from(*i)
.map(|val| SymbolValue::U64(val))
.map_err(|e| e.to_string())
} else {
Err(format!("Expected {}, but got int", unifier.stringify(expected_ty)))
}
}
Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
return Err(format!("Expected {:?}, but got Tuple", expected_ty.get_type_name()))
};
assert_eq!(ty.len(), t.len());
let elems = t.into_iter()
.zip(ty)
.map(|(constant, ty)| Self::from_constant(constant, *ty, primitives, unifier))
.collect::<Result<Vec<SymbolValue>, _>>()?;
Ok(SymbolValue::Tuple(elems))
}
Constant::Float(f) => {
if unifier.unioned(expected_ty, primitives.float) {
Ok(SymbolValue::Double(*f))
} else {
Err(format!("Expected {:?}, but got float", expected_ty))
}
},
_ => Err(format!("Unsupported value type {:?}", constant)),
}
}
/// Returns the [Type] representing the data type of this value.
pub fn get_type(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> Type {
match self {
SymbolValue::I32(_) => primitives.int32,
SymbolValue::I64(_) => primitives.int64,
SymbolValue::U32(_) => primitives.uint32,
SymbolValue::U64(_) => primitives.uint64,
SymbolValue::Str(_) => primitives.str,
SymbolValue::Double(_) => primitives.float,
SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => {
let vs_tys = vs
.iter()
.map(|v| v.get_type(primitives, unifier))
.collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple {
ty: vs_tys,
})
}
SymbolValue::OptionSome(_) => primitives.option,
SymbolValue::OptionNone => primitives.option,
}
}
/// Returns the [TypeAnnotation] representing the data type of this value.
pub fn get_type_annotation(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> TypeAnnotation {
match self {
SymbolValue::Bool(..) => TypeAnnotation::Primitive(primitives.bool),
SymbolValue::Double(..) => TypeAnnotation::Primitive(primitives.float),
SymbolValue::I32(..) => TypeAnnotation::Primitive(primitives.int32),
SymbolValue::I64(..) => TypeAnnotation::Primitive(primitives.int64),
SymbolValue::U32(..) => TypeAnnotation::Primitive(primitives.uint32),
SymbolValue::U64(..) => TypeAnnotation::Primitive(primitives.uint64),
SymbolValue::Str(..) => TypeAnnotation::Primitive(primitives.str),
SymbolValue::Tuple(vs) => {
let vs_tys = vs
.iter()
.map(|v| v.get_type_annotation(primitives, unifier))
.collect::<Vec<_>>();
TypeAnnotation::Tuple(vs_tys)
}
SymbolValue::OptionNone => TypeAnnotation::CustomClass {
id: primitives.option.get_obj_id(unifier),
params: Default::default(),
},
SymbolValue::OptionSome(v) => {
let ty = v.get_type_annotation(primitives, unifier);
TypeAnnotation::CustomClass {
id: primitives.option.get_obj_id(unifier),
params: vec![ty],
}
}
}
}
/// Returns the [TypeEnum] representing the data type of this value.
pub fn get_type_enum(&self, primitives: &PrimitiveStore, unifier: &mut Unifier) -> Rc<TypeEnum> {
let ty = self.get_type(primitives, unifier);
unifier.get_ty(ty)
}
}
impl Display for SymbolValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SymbolValue::I32(i) => write!(f, "{}", i),
SymbolValue::I64(i) => write!(f, "int64({})", i),
SymbolValue::U32(i) => write!(f, "uint32({})", i),
SymbolValue::U64(i) => write!(f, "uint64({})", i),
SymbolValue::Str(s) => write!(f, "\"{}\"", s),
SymbolValue::Double(d) => write!(f, "{}", d),
SymbolValue::Bool(b) => {
if *b {
write!(f, "True")
} else {
write!(f, "False")
}
}
SymbolValue::Tuple(t) => {
write!(f, "({})", t.iter().map(|v| format!("{}", v)).collect::<Vec<_>>().join(", "))
}
SymbolValue::OptionSome(v) => write!(f, "Some({})", v),
SymbolValue::OptionNone => write!(f, "none"),
}
}
}
pub trait StaticValue {
/// Returns a unique identifier for this value.
fn get_unique_identifier(&self) -> u64;
fn get_const_obj<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
) -> BasicValueEnum<'ctx>;
/// Converts this value to a LLVM [BasicValueEnum].
fn to_basic_value_enum<'ctx, 'a>(
&self,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
expected_ty: Type,
) -> Result<BasicValueEnum<'ctx>, String>;
/// Returns a field within this value.
fn get_field<'ctx, 'a>(
&self,
name: StrRef,
ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>>;
/// Returns a single element of this tuple.
fn get_tuple_element<'ctx>(&self, index: u32) -> Option<ValueEnum<'ctx>>;
}
#[derive(Clone)]
pub enum ValueEnum<'ctx> {
Static(Arc<dyn StaticValue + Send + Sync>),
Dynamic(BasicValueEnum<'ctx>),
}
impl<'ctx> From<BasicValueEnum<'ctx>> for ValueEnum<'ctx> {
fn from(v: BasicValueEnum<'ctx>) -> Self {
ValueEnum::Dynamic(v)
}
}
impl<'ctx> From<PointerValue<'ctx>> for ValueEnum<'ctx> {
fn from(v: PointerValue<'ctx>) -> Self {
ValueEnum::Dynamic(v.into())
}
}
impl<'ctx> From<IntValue<'ctx>> for ValueEnum<'ctx> {
fn from(v: IntValue<'ctx>) -> Self {
ValueEnum::Dynamic(v.into())
}
}
impl<'ctx> From<FloatValue<'ctx>> for ValueEnum<'ctx> {
fn from(v: FloatValue<'ctx>) -> Self {
ValueEnum::Dynamic(v.into())
}
}
impl<'ctx> From<StructValue<'ctx>> for ValueEnum<'ctx> {
fn from(v: StructValue<'ctx>) -> Self {
ValueEnum::Dynamic(v.into())
}
}
impl<'ctx> ValueEnum<'ctx> {
pub fn to_basic_value_enum<'a>(
self,
ctx: &mut CodeGenContext<'ctx, 'a>,
generator: &mut dyn CodeGenerator,
expected_ty: Type,
) -> Result<BasicValueEnum<'ctx>, String> {
match self {
ValueEnum::Static(v) => v.to_basic_value_enum(ctx, generator, expected_ty),
ValueEnum::Dynamic(v) => Ok(v),
}
}
}
pub trait SymbolResolver {
// get type of type variable identifier or top-level function type
fn get_symbol_type(
&self,
unifier: &mut Unifier,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
str: StrRef,
) -> Result<Type, String>;
// get the top-level definition of identifiers
fn get_identifier_def(&self, str: StrRef) -> Result<DefinitionId, String>;
fn get_symbol_value<'ctx, 'a>(
&self,
str: StrRef,
ctx: &mut CodeGenContext<'ctx, 'a>,
) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;
fn get_string_id(&self, s: &str) -> i32;
fn get_exception_id(&self, tyid: usize) -> usize;
fn handle_deferred_eval(
&self,
_unifier: &mut Unifier,
_top_level_defs: &[Arc<RwLock<TopLevelDef>>],
_primitives: &PrimitiveStore
) -> Result<(), String> {
Ok(())
}
}
thread_local! {
static IDENTIFIER_ID: [StrRef; 11] = [
"int32".into(),
"int64".into(),
"float".into(),
"bool".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"str".into(),
"Exception".into(),
"uint32".into(),
"uint64".into(),
];
}
// convert type annotation into type
pub fn parse_type_annotation<T>(
resolver: &dyn SymbolResolver,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &Expr<T>,
) -> Result<Type, String> {
use nac3parser::ast::ExprKind::*;
let ids = IDENTIFIER_ID.with(|ids| *ids);
let int32_id = ids[0];
let int64_id = ids[1];
let float_id = ids[2];
let bool_id = ids[3];
let virtual_id = ids[4];
let list_id = ids[5];
let tuple_id = ids[6];
let str_id = ids[7];
let exn_id = ids[8];
let uint32_id = ids[9];
let uint64_id = ids[10];
let name_handling = |id: &StrRef, loc: Location, unifier: &mut Unifier| {
if *id == int32_id {
Ok(primitives.int32)
} else if *id == int64_id {
Ok(primitives.int64)
} else if *id == uint32_id {
Ok(primitives.uint32)
} else if *id == uint64_id {
Ok(primitives.uint64)
} else if *id == float_id {
Ok(primitives.float)
} else if *id == bool_id {
Ok(primitives.bool)
} else if *id == str_id {
Ok(primitives.str)
} else if *id == exn_id {
Ok(primitives.exception)
} else {
let obj_id = resolver.get_identifier_def(*id);
match obj_id {
Ok(obj_id) => {
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if !type_vars.is_empty() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got 0",
type_vars.len()
));
}
let fields = chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
)
.collect();
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields,
params: Default::default(),
}))
} else {
Err(format!("Cannot use function name as type at {}", loc))
}
}
Err(_) => {
let ty = resolver
.get_symbol_type(unifier, top_level_defs, primitives, *id)
.map_err(|e| format!("Unknown type annotation at {}: {}", loc, e))?;
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
Ok(ty)
} else {
Err(format!("Unknown type annotation {} at {}", id, loc))
}
}
}
}
};
let subscript_name_handle = |id: &StrRef, slice: &Expr<T>, unifier: &mut Unifier| {
if *id == virtual_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
.iter()
.map(|elt| {
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else {
Err("Expected multiple elements for tuple".into())
}
} else {
let types = if let Tuple { elts, .. } = &slice.node {
elts.iter()
.map(|v| {
parse_type_annotation(resolver, top_level_defs, unifier, primitives, v)
})
.collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_type_annotation(resolver, top_level_defs, unifier, primitives, slice)?]
};
let obj_id = resolver.get_identifier_def(*id)?;
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if types.len() != type_vars.len() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
types.len()
));
}
let mut subst = HashMap::new();
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id
} else {
unreachable!()
};
subst.insert(id, *ty);
}
let mut fields = fields
.iter()
.map(|(attr, ty, is_mutable)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, *is_mutable))
})
.collect::<HashMap<_, _>>();
fields.extend(methods.iter().map(|(attr, ty, _)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, false))
}));
Ok(unifier.add_ty(TypeEnum::TObj { obj_id, fields, params: subst }))
} else {
Err("Cannot use function name as type".into())
}
}
};
match &expr.node {
Name { id, .. } => name_handling(id, expr.location, unifier),
Subscript { value, slice, .. } => {
if let Name { id, .. } = &value.node {
subscript_name_handle(id, slice, unifier)
} else {
Err(format!("unsupported type expression at {}", expr.location))
}
}
_ => Err(format!("unsupported type expression at {}", expr.location)),
}
}
impl dyn SymbolResolver + Send + Sync {
pub fn parse_type_annotation<T>(
&self,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &Expr<T>,
) -> Result<Type, String> {
parse_type_annotation(self, top_level_defs, unifier, primitives, expr)
}
pub fn get_type_name(
&self,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
ty: Type,
) -> String {
unifier.internal_stringify(
ty,
&mut |id| {
if let TopLevelDef::Class { name, .. } = &*top_level_defs[id].read() {
name.to_string()
} else {
unreachable!("expected class definition")
}
},
&mut |id| format!("typevar{}", id),
&mut None,
)
}
}
impl Debug for dyn SymbolResolver + Send + Sync {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "")
}
}