nac3_sca/nac3core/src/top_level.rs

547 lines
22 KiB
Rust

use std::borrow::BorrowMut;
use std::{collections::HashMap, collections::HashSet, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
use crate::symbol_resolver::SymbolResolver;
use crate::typecheck::typedef::{FunSignature, FuncArg};
use parking_lot::{Mutex, RwLock};
use rustpython_parser::ast::{self, Stmt};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct DefinitionId(pub usize);
pub enum TopLevelDef {
Class {
// object ID used for TypeEnum
object_id: DefinitionId,
// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<DefinitionId>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Initializer {
class_id: DefinitionId,
},
}
impl TopLevelDef {
fn get_function_type(&self) -> Result<Type, String> {
if let Self::Function { signature, .. } = self {
Ok(*signature)
} else {
Err("only expect function def here".into())
}
}
}
pub struct TopLevelContext {
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
}
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: RwLock<Unifier>,
// primitive store
pub primitives: PrimitiveStore,
// mangled class method name to def_id
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
// record the def id of the classes whoses fields and methods are to be analyzed
pub to_be_analyzed_class: RwLock<Vec<DefinitionId>>,
}
impl TopLevelComposer {
pub fn to_top_level_context(&self) -> TopLevelContext {
TopLevelContext {
definitions: self.definition_list.clone(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
fn name_mangling(mut class_name: String, method_name: &str) -> String {
class_name.push_str(method_name);
class_name
}
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
let primitives = Self::make_primitives();
let top_level_def_list = vec![
RwLock::new(Self::make_top_level_class_def(0, None)),
RwLock::new(Self::make_top_level_class_def(1, None)),
RwLock::new(Self::make_top_level_class_def(2, None)),
RwLock::new(Self::make_top_level_class_def(3, None)),
RwLock::new(Self::make_top_level_class_def(4, None)),
];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
let composer = TopLevelComposer {
definition_list: RwLock::new(top_level_def_list).into(),
ast_list: RwLock::new(ast_list),
primitives: primitives.0,
unifier: primitives.1.into(),
class_method_to_def_id: Default::default(),
to_be_analyzed_class: Default::default(),
};
(
vec![
("int32".into(), DefinitionId(0), composer.primitives.int32),
("int64".into(), DefinitionId(1), composer.primitives.int64),
("float".into(), DefinitionId(2), composer.primitives.float),
("bool".into(), DefinitionId(3), composer.primitives.bool),
("none".into(), DefinitionId(4), composer.primitives.none),
],
composer,
)
}
/// already include the definition_id of itself inside the ancestors vector
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: vec![DefinitionId(index)],
resolver,
}
}
pub fn make_top_level_function_def(
name: String,
ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver,
}
}
/// step 0, register, just remeber the names of top level classes/function
pub fn register_top_level(
&mut self,
ast: ast::Stmt<()>,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId), String> {
let (
mut def_list,
mut ast_list
) = (
self.definition_list.write(),
self.ast_list.write()
);
assert_eq!(def_list.len(), ast_list.len());
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string();
let class_def_id = def_list.len();
// add the class to the definition lists
def_list
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
// since later when registering class method, ast will still be used,
// here push None temporarly, later will move the ast inside
ast_list.push(None);
// parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves
// by using `class_method_to_def_id`
for b in body {
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
let fun_name = Self::name_mangling(class_name.clone(), name);
let def_id = def_list.len();
// add to the definition list
def_list.push(
Self::make_top_level_function_def(
fun_name.clone(),
self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
args: Default::default(),
ret: self.primitives.none.into(),
vars: Default::default(),
}.into())),
resolver.clone(),
)
.into(),
);
// the ast of class method is in the class, push None in to the list here
ast_list.push(None);
// class method, do not let the symbol manager manage it, use our own map
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
}
}
// move the ast to the entry of the class in the ast_list
ast_list[class_def_id] = Some(ast);
// put the constructor into the def_list
def_list.push(
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
.into(),
);
ast_list.push(None);
// class, put its def_id into the to be analyzed set
let mut to_be_analyzed = self.to_be_analyzed_class.write();
to_be_analyzed.push(DefinitionId(class_def_id));
Ok((class_name, DefinitionId(class_def_id)))
}
ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string();
// add to the definition list
def_list.push(
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
.into(),
);
ast_list.push(Some(ast));
// return
Ok((fun_name, DefinitionId(def_list.len() - 1)))
}
_ => Err("only registrations of top level classes/functions are supprted".into()),
}
}
/// step 1, analyze the type vars associated with top level class
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = self.ast_list.read();
let mut unifier = self.unifier.write();
for (class_def, class_ast) in def_list
.iter_mut()
.zip(ast_list.iter())
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
// only deal with class def here
let (
class_bases,
class_def_type_vars,
class_resolver
) = {
if let TopLevelDef::Class {
type_vars,
resolver,
..
} = class_def.get_mut() {
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
bases,
..
}, .. }) = class_ast {
(bases, type_vars, resolver)
} else { unreachable!("must be both class") }
} else { continue }
};
let mut is_generic = false;
for b in class_bases {
match &b.node {
// analyze typevars bounded to the class,
// only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript {value, slice, ..} if {
// can only be `Generic[...]` and this can only appear once
if let ast::ExprKind::Name { id, .. } = &value.node {
if id == "Generic" {
if !is_generic {
is_generic = true;
true
} else {
return Err("Only single Generic[...] can be in bases".into())
}
} else { false }
} else { false }
} => {
// if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
// parse the type vars
let type_vars = elts
.iter()
.map(|e|
class_resolver
.as_ref()
.unwrap()
.lock()
.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
e)
)
.collect::<Result<Vec<_>, _>>()?;
// check if all are unique type vars
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
let all_unique_type_var = type_vars
.iter()
.all(|x| {
let ty = unifier.get_ty(*x);
if let TypeEnum::TVar {id, ..} = ty.as_ref() {
occured_type_var_id.insert(*id)
} else { false }
});
if !all_unique_type_var { return Err("expect unique type variables".into()) }
// add to TopLevelDef
class_def_type_vars.extend(type_vars);
// `class A(Generic[T])`
} else {
let ty =
class_resolver
.as_ref()
.unwrap()
.lock()
.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
&slice
)?;
// check if it is type var
let is_type_var = matches!(
unifier.get_ty(ty).as_ref(),
&TypeEnum::TVar { .. }
);
if !is_type_var { return Err("expect type variable here".into()) }
// add to TopLevelDef
class_def_type_vars.push(ty);
}
}
// if others, do nothing in this function
_ => continue
}
}
};
Ok(())
}
/// step 2, base classes. Need to separate step1 and step2 for this reason:
/// `class B(Generic[T, V]);
/// class A(B[int, bool])`
/// if the type var associated with class `B` has not been handled properly,
/// the parse of type annotation of `B[int, bool]` will fail
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = self.ast_list.read();
let mut unifier = self.unifier.write();
for (class_def, class_ast) in def_list
.iter_mut()
.zip(ast_list.iter())
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
let (
class_bases,
class_ancestors,
class_resolver
) = {
if let TopLevelDef::Class {
ancestors,
resolver,
..
} = class_def.get_mut() {
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
bases,
..
}, .. }) = class_ast {
(bases, ancestors, resolver)
} else { unreachable!("must be both class") }
} else { continue }
};
for b in class_bases {
// type vars have already been handled, so skip on `Generic[...]`
if let ast::ExprKind::Subscript {value, ..} = &b.node {
if let ast::ExprKind::Name {id, ..} = &value.node {
if id == "Generic" { continue }
}
}
// get the def id of the base class
let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
b
)?;
let base_id =
if let TypeEnum::TObj {obj_id, ..} = unifier.get_ty(base_ty).as_ref() {
*obj_id
} else { return Err("expect concrete class/type to be base class".into()) };
// write to the class ancestors
class_ancestors.push(base_id);
}
};
Ok(())
}
/// step 3, class_fields
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ast_list = self.ast_list.read();
let mut unifier = self.unifier.write();
let class_method_to_def_id = self.class_method_to_def_id.read();
let mut to_be_analyzed_class = self.to_be_analyzed_class.write();
while !to_be_analyzed_class.is_empty() {
let ind = to_be_analyzed_class.remove(0).0;
let (class_def, class_ast) = (
&mut def_list[ind], &ast_list[ind]
);
let (
class_name,
class_fields,
class_methods,
class_resolver,
class_body
) = {
if let TopLevelDef::Class {
resolver,
fields,
methods,
..
} = class_def.get_mut() {
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
name,
body,
..
}, .. }) = class_ast {
(name, fields, methods, resolver, body)
} else { unreachable!("must be both class") }
} else {
to_be_analyzed_class.push(DefinitionId(ind));
continue
}
};
for b in class_body {
if let ast::StmtKind::FunctionDef {
args: func_args,
body: func_body,
name: func_name,
returns: func_returns,
..
} = &b.node {
// unwrap should not fail
let method_def_id =
class_method_to_def_id
.get(&Self::name_mangling(
class_name.into(),
func_name)
).unwrap();
let method_def = def_list[method_def_id.0].write();
let method_ty = method_def.get_function_type()?;
let method_signature = unifier.get_ty(method_ty);
if let TypeEnum::TFunc(sig) = method_signature.as_ref() {
let mut sig = &mut *sig.borrow_mut();
} else { unreachable!() }
} else {
// what should we do with `class A: a = 3`?
continue
}
}
}
Ok(())
}
fn analyze_top_level_inheritance(&mut self) -> Result<(), String> {
unimplemented!()
}
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
unimplemented!()
}
}