nac3_sca/nac3core/src/top_level.rs

1055 lines
44 KiB
Rust

use std::borrow::BorrowMut;
use std::ops::{Deref, DerefMut};
use std::{collections::HashMap, collections::HashSet, sync::Arc};
use self::top_level_type_annotation_info::*;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
use crate::typecheck::{typedef::{FunSignature, FuncArg}};
use crate::symbol_resolver::SymbolResolver;
use itertools::{Itertools, izip};
use parking_lot::{Mutex, RwLock};
use rustpython_parser::ast::{self, Stmt};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct DefinitionId(pub usize);
pub mod top_level_type_annotation_info {
use super::*;
#[derive(Clone)]
pub enum TypeAnnotation {
PrimitiveKind(Type),
ConcretizedCustomClassKind {
id: DefinitionId,
// can not be type var, others are all fine
params: Vec<TypeAnnotation>
},
// can only be ConcretizedCustomClassKind
VirtualKind(Box<TypeAnnotation>),
TypeVarKind(Type),
SelfTypeKind(DefinitionId),
}
pub fn parse_ast_to_type_annotation_kinds<T>(
resolver: &dyn SymbolResolver,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
) -> Result<TypeAnnotation, String> {
let results = vec![
parse_ast_to_concrete_primitive_kind(resolver, top_level_defs, unifier, primitives, expr),
parse_ast_to_concretized_custom_class_kind(resolver, top_level_defs, unifier, primitives, expr),
parse_ast_to_type_variable_kind(resolver, top_level_defs, unifier, primitives, expr),
parse_ast_to_virtual_kind(resolver, top_level_defs, unifier, primitives, expr)
];
let results = results.iter().filter(|x| x.is_ok()).collect_vec();
if results.len() == 1 {
results[0].clone()
} else {
Err("cannot be parsed the type annotation without ambiguity".into())
}
}
pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
ann: &TypeAnnotation
) -> Result<Type, String> {
match ann {
TypeAnnotation::ConcretizedCustomClassKind { id, params } => {
let class_def = top_level_defs[id.0].read();
if let TopLevelDef::Class {fields, methods, type_vars, .. } = &*class_def {
if type_vars.len() != params.len() {
Err(format!(
"unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
params.len()
))
} else {
let param_ty = params
.iter()
.map(|x| get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x
))
.collect::<Result<Vec<_>, _>>()?;
let subst = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*x).as_ref() {
*id
} else {
unreachable!()
}
})
.zip(param_ty.into_iter())
.collect::<HashMap<u32, Type>>();
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(name.clone(), subst_ty)
})
.collect::<HashMap<String, Type>>();
tobj_fields.extend(
fields
.iter()
.map(|(name, ty)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(name.clone(), subst_ty)
})
);
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id: *id,
fields: tobj_fields.into(),
params: subst.into()
}))
}
} else {
unreachable!("should be class def here")
}
}
TypeAnnotation::SelfTypeKind(obj_id) => {
let class_def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class {fields, methods, type_vars, .. } = &*class_def {
let subst = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*x).as_ref() {
(*id, *x)
} else {
unreachable!()
}
})
.collect::<HashMap<u32, Type>>();
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
(name.clone(), *ty)
})
.collect::<HashMap<String, Type>>();
tobj_fields.extend(fields.clone().into_iter());
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields.into(),
params: subst.into()
}))
} else {
unreachable!("should be class def here")
}
}
TypeAnnotation::PrimitiveKind(ty) => Ok(*ty),
TypeAnnotation::TypeVarKind(ty) => Ok(*ty),
TypeAnnotation::VirtualKind(ty) => {
let ty = get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
ty.as_ref()
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
}
}
}
fn parse_ast_to_concrete_primitive_kind<T>(
_resolver: &dyn SymbolResolver,
_top_level_defs: &[Arc<RwLock<TopLevelDef>>],
_unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
) -> Result<TypeAnnotation, String> {
match &expr.node {
ast::ExprKind::Name { id, .. } => match id.as_str() {
"int32" => Ok(TypeAnnotation::PrimitiveKind(primitives.int32)),
"int64" => Ok(TypeAnnotation::PrimitiveKind(primitives.int64)),
"float" => Ok(TypeAnnotation::PrimitiveKind(primitives.float)),
"bool" => Ok(TypeAnnotation::PrimitiveKind(primitives.bool)),
"None" => Ok(TypeAnnotation::PrimitiveKind(primitives.none)),
_ => Err("not primitive".into())
}
_ => Err("not primitive".into())
}
}
pub fn parse_ast_to_concretized_custom_class_kind<T>(
resolver: &dyn SymbolResolver,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
) -> Result<TypeAnnotation, String> {
match &expr.node {
ast::ExprKind::Name { id, .. } => match id.as_str() {
"int32" | "int64" | "float" | "bool" | "None" =>
Err("expect custom class instead of primitives here".into()),
x => {
let obj_id = resolver
.get_identifier_def(x)
.ok_or_else(|| "unknown class name".to_string())?;
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { .. } = &*def {
Ok(TypeAnnotation::ConcretizedCustomClassKind { id: obj_id, params: vec![]})
} else {
Err("function cannot be used as a type".into())
}
}
},
ast::ExprKind::Subscript { value, slice, .. } => {
if let ast::ExprKind::Name { id, .. } = &value.node {
if vec!["virtual", "Generic"].contains(&id.as_str()) { return Err("keywords cannot be class name".into()) }
let obj_id = resolver
.get_identifier_def(id)
.ok_or_else(|| "unknown class name".to_string())?;
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { .. } = &*def {
let param_type_infos =
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.iter()
.map(|v| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
v
)
})
.collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_ast_to_type_annotation_kinds(
resolver, top_level_defs, unifier, primitives, slice,
)?]
};
if param_type_infos.iter().any(|x| matches!(x, TypeAnnotation::TypeVarKind( .. ))) {
return Err("cannot apply type variable to class generic parameters".into())
}
Ok(TypeAnnotation::ConcretizedCustomClassKind { id: obj_id, params: param_type_infos })
} else {
Err("function cannot be used as a type".into())
}
} else {
Err("unsupported expression type".into())
}
},
_ => Err("unsupported expression type".into())
}
}
pub fn parse_ast_to_virtual_kind<T>(
resolver: &dyn SymbolResolver,
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
) -> Result<TypeAnnotation, String> {
match &expr.node {
ast::ExprKind::Subscript { value, slice, .. }
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "virtual") => {
let def = parse_ast_to_concretized_custom_class_kind(
resolver,
top_level_defs,
unifier,
primitives,
slice.as_ref()
)?;
if !matches!(def, TypeAnnotation::ConcretizedCustomClassKind { .. }) {
unreachable!("should must be concretized custom class kind")
}
Ok(TypeAnnotation::VirtualKind(def.into()))
}
_ => Err("virtual type annotation must be like `virtual[ .. ]`".into())
}
}
pub fn parse_ast_to_type_variable_kind<T>(
resolver: &dyn SymbolResolver,
_top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
) -> Result<TypeAnnotation, String> {
if let ast::ExprKind::Name { id, .. } = &expr.node {
let ty = resolver
.get_symbol_type(unifier, primitives, id)
.ok_or_else(|| "unknown type variable name".to_string())?;
Ok(TypeAnnotation::TypeVarKind(ty))
} else {
Err("unsupported expression for type variable".into())
}
}
}
pub enum TopLevelDef {
Class {
// name for error messages and symbols
name: String,
// object ID used for TypeEnum
object_id: DefinitionId,
// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<TypeAnnotation>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
},
Initializer {
class_id: DefinitionId,
},
}
pub struct TopLevelContext {
pub definitions: Arc<Vec<Arc<RwLock<TopLevelDef>>>>,
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
}
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: Unifier,
// primitive store
pub primitives_ty: PrimitiveStore,
// mangled class method name to def_id
// pub class_method_to_def_id: HashMap<String, DefinitionId>,
// record the def id of the classes whoses fields and methods are to be analyzed
// pub to_be_analyzed_class: Vec<DefinitionId>,
pub keyword_list: Vec<String>,
}
impl TopLevelContext {
pub fn read_top_level_def_list(&self) -> &[Arc<RwLock<TopLevelDef>>] {
self.definitions.as_slice()
}
}
impl TopLevelComposer {
pub fn make_top_level_context(self) -> TopLevelContext {
TopLevelContext {
definitions: self
.definition_ast_list
.into_iter()
.map(|(x, ..)| x)
.collect::<Vec<_>>()
.into(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(0),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let int64 = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(1),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let float = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(2),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let bool = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(3),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let none = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(4),
fields: HashMap::new().into(),
params: HashMap::new().into(),
});
let primitives = PrimitiveStore { int32, int64, float, bool, none };
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
(primitives, unifier)
}
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name
// TODO: add list and tuples?
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
let primitives = Self::make_primitives();
let top_level_def_list = vec![
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None, "int32"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None, "int64"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None, "float"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None, "bool"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None, "none"))),
];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
let composer = TopLevelComposer {
definition_ast_list: izip!(top_level_def_list, ast_list).collect_vec(),
primitives_ty: primitives.0,
unifier: primitives.1,
// class_method_to_def_id: Default::default(),
// to_be_analyzed_class: Default::default(),
keyword_list: vec![
"Generic".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"int32".into(),
"int64".into(),
"float".into(),
"bool".into(),
"none".into(),
"None".into(),
]
};
(
vec![
("int32".into(), DefinitionId(0), composer.primitives_ty.int32),
("int64".into(), DefinitionId(1), composer.primitives_ty.int64),
("float".into(), DefinitionId(2), composer.primitives_ty.float),
("bool".into(), DefinitionId(3), composer.primitives_ty.bool),
("none".into(), DefinitionId(4), composer.primitives_ty.none),
],
composer,
)
}
/// already include the definition_id of itself inside the ancestors vector
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
name: &str,
) -> TopLevelDef {
TopLevelDef::Class {
name: name.to_string(),
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: vec![TypeAnnotation::SelfTypeKind(DefinitionId(index))],
resolver,
}
}
/// when first registering, the type is a invalid value
pub fn make_top_level_function_def(
name: String,
ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef {
TopLevelDef::Function {
name,
signature: ty,
instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(),
resolver,
}
}
fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
class_name.push_str(method_name);
class_name
}
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
self
.definition_ast_list
.iter()
.map(|(def, ..)| def.clone())
.collect_vec()
}
/// step 0, register, just remeber the names of top level classes/function
pub fn register_top_level(
&mut self,
ast: ast::Stmt<()>,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId), String> {
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
if self.keyword_list.contains(name) {
return Err("cannot use keyword as a class name".into())
}
let class_name = name.to_string();
let class_def_id = self.definition_ast_list.len();
// since later when registering class method, ast will still be used,
// here push None temporarly, later will move the ast inside
let mut class_def_ast = (
Arc::new(RwLock::new(Self::make_top_level_class_def(
class_def_id,
resolver.clone(),
name.as_str(),
))),
None,
);
// parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id
let mut class_method_name_def_ids: Vec<(
// the simple method name without class name
String,
// in this top level def, method name is prefixed with the class name
Arc<RwLock<TopLevelDef>>,
DefinitionId,
Type
)> = Vec::new();
let mut class_method_index_offset = 0;
for b in body {
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
let method_def_id = self.definition_ast_list.len() + {
class_method_index_offset += 1;
class_method_index_offset
};
// dummy method define here
let dummy_method_type = self.unifier.get_fresh_var();
class_method_name_def_ids.push((
method_name.clone(),
RwLock::new(Self::make_top_level_function_def(
Self::make_class_method_name(class_name.clone(), method_name),
// later unify with parsed type
dummy_method_type.0,
resolver.clone(),
))
.into(),
DefinitionId(method_def_id),
dummy_method_type.0
));
} else {
// do nothing
continue
}
}
// move the ast to the entry of the class in the ast_list
class_def_ast.1 = Some(ast);
// get the methods into the class_def
for (name, _, id, ty) in &class_method_name_def_ids {
let mut class_def = class_def_ast.0.write();
if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() {
methods.push((name.clone(), *ty, *id))
} else { unreachable!() }
}
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
self.definition_ast_list.push(class_def_ast);
for (_, def, ..) in class_method_name_def_ids {
self.definition_ast_list.push((def, None));
}
// put the constructor into the def_list
self.definition_ast_list.push((
RwLock::new(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) })
.into(),
None,
));
Ok((class_name, DefinitionId(class_def_id)))
}
ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string();
// add to the definition list
self.definition_ast_list.push((
RwLock::new(Self::make_top_level_function_def(
name.into(),
// unify with correct type later
self.unifier.get_fresh_var().0,
resolver,
))
.into(),
Some(ast),
));
// return
Ok((fun_name, DefinitionId(self.definition_ast_list.len() - 1)))
}
_ => Err("only registrations of top level classes/functions are supprted".into()),
}
}
/// step 1, analyze the type vars associated with top level class
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let def_list = &self.definition_ast_list;
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty;
for (class_def, class_ast) in def_list {
// only deal with class def here
let mut class_def = class_def.write();
let (class_bases_ast, class_def_type_vars, class_resolver) = {
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, type_vars, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap().lock();
let class_resolver = class_resolver.deref();
let mut is_generic = false;
for b in class_bases_ast {
match &b.node {
// analyze typevars bounded to the class,
// only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "Generic")
} => {
if !is_generic {
is_generic = true;
} else {
return Err("Only single Generic[...] can be in bases".into());
}
let mut type_var_list: Vec<&ast::Expr<()>> = vec![];
// if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
type_var_list.extend(elts.iter());
// `class A(Generic[T])`
} else {
type_var_list.push(slice.deref());
}
// parse the type vars
let type_vars = type_var_list
.into_iter()
.map(|e| {
class_resolver.parse_type_annotation(
&temp_def_list,
unifier,
primitives_store,
e
)
})
.collect::<Result<Vec<_>, _>>()?;
// check if all are unique type vars
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
let all_unique_type_var = type_vars.iter().all(|x| {
let ty = unifier.get_ty(*x);
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
occured_type_var_id.insert(*id)
} else {
false
}
});
// NOTE: create a copy of all type vars for the type vars associated with class
let type_vars = type_vars
.into_iter()
.map(|x| {
let range = unifier.get_ty(x);
if let TypeEnum::TVar { range, .. } = range.as_ref() {
let range = &*range.borrow();
let range = range.as_slice();
unifier.get_fresh_var_with_range(range).0
} else {
unreachable!("must be type var here");
}
})
.collect_vec();
if !all_unique_type_var {
return Err("expect unique type variables".into());
}
// add to TopLevelDef
class_def_type_vars.extend(type_vars);
}
// if others, do nothing in this function
_ => continue,
}
}
}
Ok(())
}
/// step 2, base classes.
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
let temp_def_list = self.extract_def_list();
for (class_def, class_ast) in self.definition_ast_list.iter_mut() {
let mut class_def = class_def.write();
let (class_bases, class_ancestors, class_resolver) = {
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, ancestors, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap().lock();
let class_resolver = class_resolver.deref();
let mut has_base = false;
for b in class_bases {
// type vars have already been handled, so skip on `Generic[...]`
if matches!(
&b.node,
ast::ExprKind::Subscript { value, .. }
if matches!(
&value.node,
ast::ExprKind::Name { id, .. } if id == "Generic"
)
) { continue }
if has_base {
return Err("a class def can only have at most one base class \
declaration and one generic declaration".into())
}
has_base = true;
let base_ty = parse_ast_to_type_annotation_kinds(
class_resolver,
&temp_def_list,
self.unifier.borrow_mut(),
&self.primitives_ty,
b
)?;
if let TypeAnnotation::ConcretizedCustomClassKind { .. } = base_ty {
// TODO: check to prevent cyclic base class
class_ancestors.push(base_ty);
} else {
return Err("class base declaration can only be concretized custom class".into())
}
}
}
Ok(())
}
/// step 3, class fields and methods
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives = &self.primitives_ty;
let def_ast_list = &self.definition_ast_list;
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
for (class_def, class_ast) in def_ast_list {
Self::analyze_single_class(
class_def.clone(),
&class_ast.as_ref().unwrap().node,
&temp_def_list,
unifier,
primitives,
&mut type_var_to_concrete_def
)?
}
// base class methods add and check
// TODO:
// unification of previously assigned typevar
for (ty, def) in type_var_to_concrete_def {
let target_ty = get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?;
unifier.unify(ty, target_ty)?;
}
Ok(())
}
/// step 4, after class methods are done
fn analyze_top_level_function(&mut self) -> Result<(), String> {
let def_list = &self.definition_ast_list;
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty;
for (function_def, function_ast) in def_list {
let function_def = function_def.read();
let function_def = function_def.deref();
let function_ast = if let Some(function_ast) = function_ast {
function_ast
} else {
continue;
};
if let TopLevelDef::Function { signature: dummy_ty, resolver, .. } = function_def {
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
let resolver = resolver.as_ref();
let resolver = resolver.unwrap();
let resolver = resolver.deref().lock();
let function_resolver = resolver.deref();
let arg_types = {
args
.args
.iter()
.map(|x| -> Result<FuncArg, String> {
let annotation = x
.node
.annotation
.as_ref()
.ok_or_else(|| "function parameter type annotation needed".to_string())?
.as_ref();
Ok(FuncArg {
name: x.node.arg.clone(),
ty: function_resolver.parse_type_annotation(
temp_def_list.as_slice(),
unifier,
primitives_store,
annotation
)?,
// TODO: function type var
default_value: Default::default()
})
})
.collect::<Result<Vec<_>, _>>()?
};
let return_ty = {
let return_annotation = returns
.as_ref()
.ok_or_else(|| "function return type needed".to_string())?
.as_ref();
function_resolver.parse_type_annotation(
temp_def_list.as_slice(),
unifier,
primitives_store,
return_annotation
)?
};
let function_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: arg_types,
ret: return_ty,
// TODO: handle var map
vars: Default::default()
}.into()));
unifier.unify(*dummy_ty, function_ty)?;
} else {
unreachable!("must be both function");
}
} else {
continue;
}
};
Ok(())
}
/// step 5, field instantiation?
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
// TODO:
unimplemented!()
}
fn analyze_single_class(
class_def: Arc<RwLock<TopLevelDef>>,
class_ast: &ast::StmtKind<()>,
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>
) -> Result<(), String> {
let mut class_def = class_def.write();
let (
_class_id,
_class_name,
_class_bases_ast,
class_body_ast,
_class_ancestor_def,
class_fields_def,
class_methods_def,
_class_type_vars_def,
class_resolver,
) = if let TopLevelDef::Class {
object_id,
ancestors,
fields,
methods,
resolver,
type_vars
} = class_def.deref_mut() {
if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast {
(object_id, name.clone(), bases, body, ancestors, fields, methods, type_vars, resolver)
} else {
unreachable!("here must be class def ast");
}
} else {
unreachable!("here must be class def ast");
};
let class_resolver = class_resolver.as_ref().unwrap();
let mut class_resolver = class_resolver.lock();
let class_resolver = class_resolver.deref_mut();
for b in class_body_ast {
if let ast::StmtKind::FunctionDef { args, returns, name, body, .. } = &b.node {
let (method_dummy_ty, ..) = Self::get_class_method_def_info(class_methods_def, name)?;
// TODO: handle self arg
// TODO: handle parameter with same name
let arg_type: Vec<FuncArg> = {
let mut result = Vec::new();
for x in &args.args{
let name = x.node.arg.clone();
let type_ann = {
let annotation_expr = x
.node
.annotation
.as_ref()
.ok_or_else(|| "type annotation needed".to_string())?
.as_ref();
parse_ast_to_type_annotation_kinds(
class_resolver,
temp_def_list,
unifier,
primitives,
annotation_expr
)?
};
if let TypeAnnotation::TypeVarKind(_ty) = &type_ann {
// TODO: need to handle to different type vars that are
// asscosiated with the class and that are not
}
let dummy_func_arg = FuncArg {
name,
ty: unifier.get_fresh_var().0,
// TODO: symbol default value?
default_value: None
};
// push the dummy type and the type annotation
// into the list for later unification
type_var_to_concrete_def.insert(dummy_func_arg.ty, type_ann.clone());
result.push(dummy_func_arg)
}
result
};
let ret_type = {
let result = returns
.as_ref()
.ok_or_else(|| "method return type annotation needed".to_string())?
.as_ref();
let annotation = parse_ast_to_type_annotation_kinds(
class_resolver,
temp_def_list,
unifier,
primitives,
result
)?;
let dummy_return_type = unifier.get_fresh_var().0;
type_var_to_concrete_def.insert(dummy_return_type, annotation.clone());
dummy_return_type
};
// TODO: handle var map, to create a new copy of type var
// while tracking the type var associated with class
let method_var_map: HashMap<u32, Type> = HashMap::new();
let method_type = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: arg_type,
ret: ret_type,
vars: method_var_map
}.into()));
// unify now since function type is not in type annotation define
// which is fine since type within method_type will be subst later
unifier.unify(method_dummy_ty, method_type)?;
// class fields
if name == "__init__" {
for b in body {
let mut defined_fields: HashSet<String> = HashSet::new();
// TODO: check the type of value, field instantiation check
if let ast::StmtKind::AnnAssign { annotation, target, value: _, .. } = &b.node {
if let ast::ExprKind::Attribute { value, attr, .. } = &target.node {
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "self") {
if defined_fields.insert(attr.to_string()) {
let dummy_field_type = unifier.get_fresh_var().0;
class_fields_def.push((attr.to_string(), dummy_field_type));
let annotation = parse_ast_to_type_annotation_kinds(
class_resolver,
&temp_def_list,
unifier,
primitives,
annotation.as_ref()
)?;
type_var_to_concrete_def.insert(dummy_field_type, annotation);
} else {
return Err("same class fields defined twice".into());
}
}
}
}
}
}
} else {
continue;
}
};
Ok(())
}
fn get_class_method_def_info(
class_methods_def: &[(String, Type, DefinitionId)],
method_name: &str
) -> Result<(Type, DefinitionId), String> {
for (name, ty, def_id) in class_methods_def {
if name == method_name {
return Ok((*ty, *def_id));
}
}
Err(format!("no method {} in the current class", method_name))
}
}