nac3_sca/nac3core/src/toplevel/mod.rs

1069 lines
47 KiB
Rust

use std::{
borrow::BorrowMut,
collections::{HashMap, HashSet},
iter::FromIterator,
ops::{Deref, DerefMut},
sync::Arc,
};
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier};
use crate::{
symbol_resolver::SymbolResolver,
typecheck::{type_inferencer::CodeLocation, typedef::CallId},
};
use itertools::{izip, Itertools};
use parking_lot::RwLock;
use rustpython_parser::ast::{self, Stmt};
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
pub struct DefinitionId(pub usize);
mod type_annotation;
use type_annotation::*;
mod helper;
#[derive(Clone)]
pub struct FunInstance {
pub body: Vec<Stmt<Option<Type>>>,
pub calls: HashMap<CodeLocation, CallId>,
pub subst: HashMap<u32, Type>,
pub unifier_id: usize,
}
pub enum TopLevelDef {
Class {
// name for error messages and symbols
name: String,
// object ID used for TypeEnum
object_id: DefinitionId,
/// type variables bounded to the class.
type_vars: Vec<Type>,
// class fields
fields: Vec<(String, Type)>,
// class methods, pointing to the corresponding function definition.
methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself.
ancestors: Vec<TypeAnnotation>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
},
Function {
// prefix for symbol, should be unique globally, and not ending with numbers
name: String,
// function signature.
signature: Type,
// instantiated type variable IDs
var_id: Vec<u32>,
/// Function instance to symbol mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class.
/// Value: function symbol name.
instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping
/// Key: string representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type
/// variables.
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, FunInstance>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
},
Initializer {
class_id: DefinitionId,
},
}
pub struct TopLevelContext {
pub definitions: Arc<RwLock<Vec<Arc<RwLock<TopLevelDef>>>>>,
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
}
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: Unifier,
// primitive store
pub primitives_ty: PrimitiveStore,
// keyword list to prevent same user-defined name
pub keyword_list: HashSet<String>,
}
impl Default for TopLevelComposer {
fn default() -> Self {
Self::new()
}
}
impl TopLevelComposer {
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name
pub fn new() -> Self {
let primitives = Self::make_primitives();
let top_level_def_list = vec![
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None, "int32"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None, "int64"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None, "float"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None, "bool"))),
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None, "none"))),
];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
TopLevelComposer {
definition_ast_list: izip!(top_level_def_list, ast_list).collect_vec(),
primitives_ty: primitives.0,
unifier: primitives.1,
// class_method_to_def_id: Default::default(),
// to_be_analyzed_class: Default::default(),
keyword_list: HashSet::from_iter(vec![
"Generic".into(),
"virtual".into(),
"list".into(),
"tuple".into(),
"int32".into(),
"int64".into(),
"float".into(),
"bool".into(),
"none".into(),
"None".into(),
]),
}
}
pub fn make_top_level_context(self) -> TopLevelContext {
TopLevelContext {
definitions: RwLock::new(
self.definition_ast_list.into_iter().map(|(x, ..)| x).collect::<Vec<_>>(),
)
.into(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
}
/// step 0, register, just remeber the names of top level classes/function
/// and check duplicate class/method/function definition
pub fn register_top_level(
&mut self,
ast: ast::Stmt<()>,
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId), String> {
let mut defined_class_name: HashSet<String> = HashSet::new();
let mut defined_class_method_name: HashSet<String> = HashSet::new();
let mut defined_function_name: HashSet<String> = HashSet::new();
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
if self.keyword_list.contains(name) {
return Err("cannot use keyword as a class name".into());
}
if !defined_class_name.insert(name.clone()) {
return Err("duplicate definition of class".into());
}
let class_name = name.to_string();
let class_def_id = self.definition_ast_list.len();
// since later when registering class method, ast will still be used,
// here push None temporarly, later will move the ast inside
let mut class_def_ast = (
Arc::new(RwLock::new(Self::make_top_level_class_def(
class_def_id,
resolver.clone(),
name.as_str(),
))),
None,
);
// parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id
let mut class_method_name_def_ids: Vec<(
// the simple method name without class name
String,
// in this top level def, method name is prefixed with the class name
Arc<RwLock<TopLevelDef>>,
DefinitionId,
Type,
)> = Vec::new();
// we do not push anything to the def list, so we keep track of the index
// and then push in the correct order after the for loop
let mut class_method_index_offset = 0;
for b in body {
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
if self.keyword_list.contains(name) {
return Err("cannot use keyword as a method name".into());
}
let global_class_method_name =
Self::make_class_method_name(class_name.clone(), method_name);
if !defined_class_method_name.insert(global_class_method_name.clone()) {
return Err("duplicate class method definition".into());
}
let method_def_id = self.definition_ast_list.len() + {
// plus 1 here since we already have the class def
class_method_index_offset += 1;
class_method_index_offset
};
// dummy method define here
let dummy_method_type = self.unifier.get_fresh_var();
class_method_name_def_ids.push((
method_name.clone(),
RwLock::new(Self::make_top_level_function_def(
global_class_method_name,
// later unify with parsed type
dummy_method_type.0,
resolver.clone(),
))
.into(),
DefinitionId(method_def_id),
dummy_method_type.0,
));
} else {
// do nothing
continue;
}
}
// move the ast to the entry of the class in the ast_list
class_def_ast.1 = Some(ast);
// get the methods into the class_def
for (name, _, id, ty) in &class_method_name_def_ids {
let mut class_def = class_def_ast.0.write();
if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() {
methods.push((name.clone(), *ty, *id))
} else {
unreachable!()
}
}
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
self.definition_ast_list.push(class_def_ast);
for (_, def, ..) in class_method_name_def_ids {
self.definition_ast_list.push((def, None));
}
// put the constructor into the def_list
self.definition_ast_list.push((
RwLock::new(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) })
.into(),
None,
));
Ok((class_name, DefinitionId(class_def_id)))
}
ast::StmtKind::FunctionDef { name, .. } => {
if self.keyword_list.contains(name) {
return Err("cannot use keyword as a top level function name".into());
}
let fun_name = name.to_string();
if !defined_function_name.insert(name.to_string()) {
return Err("duplicate top level function define".into());
}
// add to the definition list
self.definition_ast_list.push((
RwLock::new(Self::make_top_level_function_def(
name.into(),
// unify with correct type later
self.unifier.get_fresh_var().0,
resolver,
))
.into(),
Some(ast),
));
// return
Ok((fun_name, DefinitionId(self.definition_ast_list.len() - 1)))
}
_ => Err("only registrations of top level classes/functions are supprted".into()),
}
}
/// step 1, analyze the type vars associated with top level class
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let def_list = &self.definition_ast_list;
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty;
for (class_def, class_ast) in def_list {
// only deal with class def here
let mut class_def = class_def.write();
let (class_bases_ast, class_def_type_vars, class_resolver) = {
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, type_vars, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap();
let class_resolver = class_resolver.deref();
let mut is_generic = false;
for b in class_bases_ast {
match &b.node {
// analyze typevars bounded to the class,
// only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(
&value.node,
ast::ExprKind::Name { id, .. } if id == "Generic"
)
} =>
{
if !is_generic {
is_generic = true;
} else {
return Err("Only single Generic[...] can be in bases".into());
}
let mut type_var_list: Vec<&ast::Expr<()>> = vec![];
// if `class A(Generic[T, V, G])`
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
type_var_list.extend(elts.iter());
// `class A(Generic[T])`
} else {
type_var_list.push(slice.deref());
}
// parse the type vars
let type_vars = type_var_list
.into_iter()
.map(|e| {
class_resolver.parse_type_annotation(
&temp_def_list,
unifier,
primitives_store,
e,
)
})
.collect::<Result<Vec<_>, _>>()?;
// check if all are unique type vars
let all_unique_type_var = {
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
type_vars.iter().all(|x| {
let ty = unifier.get_ty(*x);
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
occured_type_var_id.insert(*id)
} else {
false
}
})
};
if !all_unique_type_var {
return Err("expect unique type variables".into());
}
// add to TopLevelDef
class_def_type_vars.extend(type_vars);
}
// if others, do nothing in this function
_ => continue,
}
}
}
Ok(())
}
/// step 2, base classes.
/// now that the type vars of all classes are done, handle base classes and
/// put Self class into the ancestors list. We only allow single inheritance
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
// first, only push direct parent into the list
for (class_def, class_ast) in self.definition_ast_list.iter_mut() {
let mut class_def = class_def.write();
let (class_bases, class_ancestors, class_resolver) = {
if let TopLevelDef::Class { ancestors, resolver, .. } = class_def.deref_mut() {
if let Some(ast::Located {
node: ast::StmtKind::ClassDef { bases, .. }, ..
}) = class_ast
{
(bases, ancestors, resolver)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let class_resolver = class_resolver.as_ref().unwrap();
let class_resolver = class_resolver.deref();
let mut has_base = false;
for b in class_bases {
// type vars have already been handled, so skip on `Generic[...]`
if matches!(
&b.node,
ast::ExprKind::Subscript { value, .. }
if matches!(
&value.node,
ast::ExprKind::Name { id, .. } if id == "Generic"
)
) {
continue;
}
if has_base {
return Err("a class def can only have at most one base class \
declaration and one generic declaration"
.into());
}
has_base = true;
// the function parse_ast_to make sure that no type var occured in
// bast_ty if it is a CustomClassKind
let base_ty = parse_ast_to_type_annotation_kinds(
class_resolver,
&temp_def_list,
unifier,
&self.primitives_ty,
b,
)?;
if let TypeAnnotation::CustomClassKind { .. } = &base_ty {
class_ancestors.push(base_ty);
} else {
return Err("class base declaration can only be custom class".into());
}
}
}
// second, get all ancestors
let mut ancestors_store: HashMap<DefinitionId, Vec<TypeAnnotation>> = Default::default();
for (class_def, class_ast) in self.definition_ast_list.iter_mut() {
let mut class_def = class_def.write();
let (class_ancestors, class_id) = {
if let TopLevelDef::Class { ancestors, object_id, .. } = class_def.deref_mut() {
if let Some(ast::Located { node: ast::StmtKind::ClassDef { .. }, .. }) =
class_ast
{
(ancestors, *object_id)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
ancestors_store.insert(
class_id,
Self::get_all_ancestors_helper(&class_ancestors[0], temp_def_list.as_slice()),
);
}
// insert the ancestors to the def list
for (class_def, class_ast) in self.definition_ast_list.iter_mut() {
let mut class_def = class_def.write();
let (class_ancestors, class_id) = {
if let TopLevelDef::Class { ancestors, object_id, .. } = class_def.deref_mut() {
if let Some(ast::Located { node: ast::StmtKind::ClassDef { .. }, .. }) =
class_ast
{
(ancestors, *object_id)
} else {
unreachable!("must be both class")
}
} else {
continue;
}
};
let ans = ancestors_store.get_mut(&class_id).unwrap();
class_ancestors.append(ans);
// insert self type annotation
class_ancestors
.insert(0, make_self_type_annotation(temp_def_list.as_slice(), class_id)?);
}
Ok(())
}
/// step 3, class fields and methods
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives = &self.primitives_ty;
let def_ast_list = &self.definition_ast_list;
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
for (class_def, class_ast) in def_ast_list {
Self::analyze_single_class_methods_fields(
class_def.clone(),
&class_ast.as_ref().unwrap().node,
&temp_def_list,
unifier,
primitives,
&mut type_var_to_concrete_def,
&self.keyword_list,
)?
}
// unification of previously assigned typevar
for (ty, def) in type_var_to_concrete_def {
let target_ty =
get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?;
unifier.unify(ty, target_ty)?;
}
// handle the inheritanced methods and fields
for (class_def, _) in def_ast_list {
Self::analyze_single_class_ancestors(
class_def.clone(),
&temp_def_list,
unifier,
primitives,
)?;
}
Ok(())
}
/// step 4, after class methods are done, top level functions have nothing unknown
fn analyze_top_level_function(&mut self) -> Result<(), String> {
let def_list = &self.definition_ast_list;
let keyword_list = &self.keyword_list;
let temp_def_list = self.extract_def_list();
let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty;
for (function_def, function_ast) in def_list {
let function_def = function_def.read();
let function_def = function_def.deref();
let function_ast = if let Some(function_ast) = function_ast {
function_ast
} else {
// no ast, class method, continue
continue;
};
if let TopLevelDef::Function { signature: dummy_ty, resolver, .. } = function_def {
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
let resolver = resolver.as_ref();
let resolver = resolver.unwrap();
let resolver = resolver.deref();
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
let arg_types = {
// make sure no duplicate parameter
let mut defined_paramter_name: HashSet<String> = HashSet::new();
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
defined_paramter_name.insert(x.node.arg.clone())
&& keyword_list.contains(&x.node.arg)
&& "self" != x.node.arg
});
if !have_unique_fuction_parameter_name {
return Err("top level function must have unique parameter names \
and names thould not be the same as the keywords"
.into());
}
args.args
.iter()
.map(|x| -> Result<FuncArg, String> {
let annotation = x
.node
.annotation
.as_ref()
.ok_or_else(|| {
"function parameter type annotation needed".to_string()
})?
.as_ref();
let type_annotation = parse_ast_to_type_annotation_kinds(
resolver,
temp_def_list.as_slice(),
unifier,
primitives_store,
annotation,
)?;
// if there are same type variables appears, we only need to copy them once
let type_vars_within =
get_type_var_contained_in_type_annotation(&type_annotation)
.into_iter()
.map(|x| -> Result<(u32, Type), String> {
if let TypeAnnotation::TypeVarKind(ty) = x {
Ok((get_var_id(ty, unifier)?, ty))
} else {
unreachable!("must be type var annotation kind")
}
})
.collect::<Result<Vec<_>, _>>()?;
for (id, ty) in type_vars_within {
if let Some(prev_ty) = function_var_map.insert(id, ty) {
// if already have the type inserted, make sure they are the same thing
assert_eq!(prev_ty, ty);
}
}
let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(),
unifier,
primitives_store,
&type_annotation,
)?;
Ok(FuncArg {
name: x.node.arg.clone(),
ty,
default_value: Default::default(),
})
})
.collect::<Result<Vec<_>, _>>()?
};
let return_ty_annotation = {
let return_annotation = returns
.as_ref()
.ok_or_else(|| "function return type needed".to_string())?
.as_ref();
parse_ast_to_type_annotation_kinds(
resolver,
&temp_def_list,
unifier,
primitives_store,
return_annotation,
)?
};
let type_vars_within =
get_type_var_contained_in_type_annotation(&return_ty_annotation)
.into_iter()
.map(|x| -> Result<(u32, Type), String> {
if let TypeAnnotation::TypeVarKind(ty) = x {
Ok((get_var_id(ty, unifier)?, ty))
} else {
unreachable!("must be type var here")
}
})
.collect::<Result<Vec<_>, _>>()?;
for (id, ty) in type_vars_within {
if let Some(prev_ty) = function_var_map.insert(id, ty) {
// if already have the type inserted, make sure they are the same thing
assert_eq!(prev_ty, ty);
}
}
let return_ty = get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives_store,
&return_ty_annotation,
)?;
let function_ty = unifier.add_ty(TypeEnum::TFunc(
FunSignature { args: arg_types, ret: return_ty, vars: function_var_map }
.into(),
));
unifier.unify(*dummy_ty, function_ty)?;
} else {
unreachable!("must be both function");
}
} else {
continue;
}
}
Ok(())
}
fn analyze_single_class_methods_fields(
class_def: Arc<RwLock<TopLevelDef>>,
class_ast: &ast::StmtKind<()>,
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
keyword_list: &HashSet<String>,
) -> Result<(), String> {
let mut class_def = class_def.write();
let (
class_id,
_class_name,
_class_bases_ast,
class_body_ast,
_class_ancestor_def,
class_fields_def,
class_methods_def,
class_type_vars_def,
class_resolver,
) = if let TopLevelDef::Class {
object_id,
ancestors,
fields,
methods,
resolver,
type_vars,
..
} = class_def.deref_mut()
{
if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast {
(
*object_id,
name.clone(),
bases,
body,
ancestors,
fields,
methods,
type_vars,
resolver,
)
} else {
unreachable!("here must be class def ast");
}
} else {
unreachable!("here must be class def ast");
};
let class_resolver = class_resolver.as_ref().unwrap();
let class_resolver = class_resolver.as_ref();
for b in class_body_ast {
if let ast::StmtKind::FunctionDef { args, returns, name, body, .. } = &b.node {
let (method_dummy_ty, ..) =
Self::get_class_method_def_info(class_methods_def, name)?;
// the method var map can surely include the class's generic parameters
let mut method_var_map: HashMap<u32, Type> = class_type_vars_def
.iter()
.map(|ty| {
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
(*id, *ty)
} else {
unreachable!("must be type var here")
}
})
.collect();
let arg_types: Vec<FuncArg> = {
// check method parameters cannot have same name
let mut defined_paramter_name: HashSet<String> = HashSet::new();
let have_unique_fuction_parameter_name = args.args.iter().all(|x| {
defined_paramter_name.insert(x.node.arg.clone())
&& !keyword_list.contains(&x.node.arg)
});
if !have_unique_fuction_parameter_name {
return Err("class method must have unique parameter names \
and names thould not be the same as the keywords"
.into());
}
let mut result = Vec::new();
for x in &args.args {
let name = x.node.arg.clone();
if name != "self" {
let type_ann = {
let annotation_expr = x
.node
.annotation
.as_ref()
.ok_or_else(|| "type annotation needed".to_string())?
.as_ref();
parse_ast_to_type_annotation_kinds(
class_resolver,
temp_def_list,
unifier,
primitives,
annotation_expr,
)?
};
// find type vars within this method parameter type annotation
let type_vars_within =
get_type_var_contained_in_type_annotation(&type_ann);
// handle the class type var and the method type var
for type_var_within in type_vars_within {
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
let id = get_var_id(ty, unifier)?;
if let Some(prev_ty) = method_var_map.insert(id, ty) {
// if already in the list, make sure they are the same?
assert_eq!(prev_ty, ty);
}
} else {
unreachable!("must be type var annotation");
}
}
// finish handling type vars
let dummy_func_arg = FuncArg {
name,
ty: unifier.get_fresh_var().0,
// TODO: symbol default value?
default_value: None,
};
// push the dummy type and the type annotation
// into the list for later unification
type_var_to_concrete_def.insert(dummy_func_arg.ty, type_ann.clone());
result.push(dummy_func_arg)
} else {
// if the parameter name is self
// python does not seem to enforce the name
// representing the self class object to be
// `self`??, but we do it here
let dummy_func_arg = FuncArg {
name: "self".into(),
ty: unifier.get_fresh_var().0,
default_value: None,
};
type_var_to_concrete_def.insert(
dummy_func_arg.ty,
make_self_type_annotation(temp_def_list, class_id)?,
);
result.push(dummy_func_arg);
}
}
result
};
let ret_type = {
if name != "__init__" {
let result = returns
.as_ref()
.ok_or_else(|| "method return type annotation needed".to_string())?
.as_ref();
let annotation = parse_ast_to_type_annotation_kinds(
class_resolver,
temp_def_list,
unifier,
primitives,
result,
)?;
// find type vars within this return type annotation
let type_vars_within =
get_type_var_contained_in_type_annotation(&annotation);
// handle the class type var and the method type var
for type_var_within in type_vars_within {
if let TypeAnnotation::TypeVarKind(ty) = type_var_within {
let id = get_var_id(ty, unifier)?;
if let Some(prev_ty) = method_var_map.insert(id, ty) {
// if already in the list, make sure they are the same?
assert_eq!(prev_ty, ty);
}
} else {
unreachable!("must be type var annotation");
}
}
let dummy_return_type = unifier.get_fresh_var().0;
type_var_to_concrete_def.insert(dummy_return_type, annotation.clone());
dummy_return_type
} else {
// if is the "__init__" function, the return type is self
let dummy_return_type = unifier.get_fresh_var().0;
type_var_to_concrete_def.insert(
dummy_return_type,
make_self_type_annotation(temp_def_list, class_id)?,
);
dummy_return_type
}
};
let method_type = unifier.add_ty(TypeEnum::TFunc(
FunSignature { args: arg_types, ret: ret_type, vars: method_var_map }.into(),
));
// NOTE: unify now since function type is not in type annotation define
// which is fine since type within method_type will be subst later
unifier.unify(method_dummy_ty, method_type)?;
// class fields
if name == "__init__" {
for b in body {
let mut defined_fields: HashSet<String> = HashSet::new();
// TODO: check the type of value, field instantiation check?
if let ast::StmtKind::AnnAssign { annotation, target, value: _, .. } =
&b.node
{
if let ast::ExprKind::Attribute { value, attr, .. } = &target.node {
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "self")
{
if defined_fields.insert(attr.to_string()) {
let dummy_field_type = unifier.get_fresh_var().0;
class_fields_def.push((attr.to_string(), dummy_field_type));
let annotation = parse_ast_to_type_annotation_kinds(
class_resolver,
&temp_def_list,
unifier,
primitives,
annotation.as_ref(),
)?;
// find type vars within this return type annotation
let type_vars_within =
get_type_var_contained_in_type_annotation(&annotation);
// handle the class type var and the method type var
for type_var_within in type_vars_within {
if let TypeAnnotation::TypeVarKind(t) = type_var_within
{
if !class_type_vars_def.contains(&t) {
return Err("class fields can only use type \
vars declared as class generic type vars"
.into());
}
} else {
unreachable!("must be type var annotation");
}
}
type_var_to_concrete_def
.insert(dummy_field_type, annotation);
} else {
return Err("same class fields defined twice".into());
}
}
}
}
}
}
} else {
continue;
}
}
Ok(())
}
fn analyze_single_class_ancestors(
class_def: Arc<RwLock<TopLevelDef>>,
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
) -> Result<(), String> {
let mut class_def = class_def.write();
let (
_class_id,
class_ancestor_def,
_class_fields_def,
class_methods_def,
_class_type_vars_def,
_class_resolver,
) = if let TopLevelDef::Class {
object_id,
ancestors,
fields,
methods,
resolver,
type_vars,
..
} = class_def.deref_mut()
{
(*object_id, ancestors, fields, methods, type_vars, resolver)
} else {
unreachable!("here must be class def ast");
};
for (method_name, method_ty, ..) in class_methods_def {
if method_name == "__init__" {
continue;
}
// search the ancestors from the nearest to the deepest to find overload and check
'search_for_overload: for anc in class_ancestor_def.iter().skip(1) {
if let TypeAnnotation::CustomClassKind { id, params } = anc {
let anc_class_def = temp_def_list.get(id.0).unwrap().read();
let anc_class_def = anc_class_def.deref();
if let TopLevelDef::Class { methods, type_vars, .. } = anc_class_def {
for (anc_method_name, anc_method_ty, ..) in methods {
// if same name, then is overload, needs check
if anc_method_name == method_name {
let param_ty = params
.iter()
.map(|x| {
get_type_from_type_annotation_kinds(
temp_def_list,
unifier,
primitives,
x,
)
})
.collect::<Result<Vec<_>, _>>()?;
let subst = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } =
unifier.get_ty(*x).as_ref()
{
*id
} else {
unreachable!()
}
})
.zip(param_ty.into_iter())
.collect::<HashMap<u32, Type>>();
let anc_method_ty = unifier.subst(*anc_method_ty, &subst).unwrap();
if let (
TypeEnum::TFunc(child_method_sig),
TypeEnum::TFunc(parent_method_sig),
) = (
unifier.get_ty(*method_ty).as_ref(),
unifier.get_ty(anc_method_ty).as_ref(),
) {
let (
FunSignature { args: c_as, ret: c_r, .. },
FunSignature { args: p_as, ret: p_r, .. },
) = (&*child_method_sig.borrow(), &*parent_method_sig.borrow());
// arguments
for (
FuncArg { name: c_name, ty: c_ty, .. },
FuncArg { name: p_name, ty: p_ty, .. },
) in c_as.iter().zip(p_as)
{
if c_name == "self" {
continue;
}
if c_name != p_name
|| !Self::check_overload_type_compatible(
unifier, *c_ty, *p_ty,
)
{
return Err("incompatible parameter".into());
}
}
// check the compatibility of c_r and p_r
if !Self::check_overload_type_compatible(unifier, *c_r, *p_r) {
return Err("incompatible parameter".into());
}
} else {
unreachable!("must be function type")
}
break 'search_for_overload;
}
}
}
}
}
}
Ok(())
}
}