use std::convert::TryInto; use crate::typecheck::context::InferenceContext; use crate::typecheck::inference_core; use crate::typecheck::magic_methods; use crate::typecheck::typedef::{Type, TypeEnum}; use crate::typecheck::primitives; use rustpython_parser::ast; use rustpython_parser::ast::fold::Fold; // REVIEW: direct impl fold trait on InferenceContext impl<'a> ast::fold::Fold> for InferenceContext<'a> { type TargetU = Option; type Error = String; fn map_user(&mut self, user: Option) -> Result { Ok(user) } fn fold_expr(&mut self, node: ast::Expr>) -> Result, Self::Error> { assert_eq!(node.custom, None); // pre-fold let mut expr = node; expr = match &expr.node { ast::ExprKind::ListComp { .. } => self.prefold_list_comprehension(expr)?, _ => rustpython_parser::ast::fold::fold_expr(self, expr)? }; Ok(ast::Expr { // compute type info and store in the custom field custom: match &expr.node { ast::ExprKind::Constant {value, kind: _} => self.infer_constant(value), ast::ExprKind::Name {id, ctx: _} => Ok(Some(self.resolve(id)?)), ast::ExprKind::List {elts, ctx: _} => self.infer_list(elts), ast::ExprKind::Tuple {elts, ctx: _} => self.infer_tuple(elts), ast::ExprKind::Attribute {value, attr, ctx: _} => self.infer_arrtibute(value, attr), ast::ExprKind::BoolOp {op: _, values} => self.infer_bool_ops(values), ast::ExprKind::BinOp {left, op, right} => self.infer_bin_ops(left, op, right), ast::ExprKind::UnaryOp {op, operand} => self.infer_unary_ops(op, operand), ast::ExprKind::Compare {left, ops, comparators} => self.infer_compare(left, ops, comparators), ast::ExprKind::Call {func, args, keywords} => self.infer_call(func, args, keywords), ast::ExprKind::Subscript {value, slice, ctx: _} => self.infer_subscript(value, slice), ast::ExprKind::IfExp {test, body, orelse} => self.infer_if_expr(test, body, orelse), ast::ExprKind::ListComp {elt, generators} => self.infer_list_comprehesion(elt, generators), _ => Err("not supported yet".into()) }?, location: expr.location, node: expr.node }) } } impl<'a> InferenceContext<'a> { fn infer_constant(&self, constant: &ast::Constant) -> Result, String> { match constant { ast::Constant::Bool(_) => Ok(Some(self.get_primitive(primitives::BOOL_TYPE))), ast::Constant::Int(val) => { let int32: Result = val.try_into(); let int64: Result = val.try_into(); if int32.is_ok() { Ok(Some(self.get_primitive(primitives::INT32_TYPE))) } else if int64.is_ok() { Ok(Some(self.get_primitive(primitives::INT64_TYPE))) } else { Err("Integer out of bound".into()) } }, ast::Constant::Float(_) => Ok(Some(self.get_primitive(primitives::FLOAT_TYPE))), ast::Constant::Tuple(vals) => { let result = vals .iter() .map(|x| self.infer_constant(x)) .collect::>(); if result.iter().all(|x| x.is_ok()) { Ok(Some(TypeEnum::ParametricType( primitives::TUPLE_TYPE, result .into_iter() .map(|x| x.unwrap().unwrap()) .collect::>(), ).into())) } else { Err("Some elements in tuple cannot be typed".into()) } } _ => Err("not supported".into()) } } fn infer_list(&self, elts: &Vec>>) -> Result, String> { if elts.is_empty() { Ok(Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![TypeEnum::BotType.into()]).into())) } else { let types = elts .iter() .map(|x| &x.custom) .collect::>(); if types.iter().all(|x| x.is_some()) { let head = types.iter().next().unwrap(); // here unwrap alone should be fine after the previous check if types.iter().all(|x| x.eq(head)) { Ok(Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![(*head).clone().unwrap()]).into())) } else { Err("inhomogeneous list is not allowed".into()) } } else { Err("list elements must have some type".into()) } } } fn infer_tuple(&self, elts: &Vec>>) -> Result, String> { let types = elts .iter() .map(|x| (x.custom).clone()) .collect::>(); if types.iter().all(|x| x.is_some()) { Ok(Some(TypeEnum::ParametricType( primitives::TUPLE_TYPE, types.into_iter().map(|x| x.unwrap()).collect()).into())) // unwrap alone should be fine after the previous check } else { Err("tuple elements must have some type".into()) } } fn infer_arrtibute(&self, value: &Box>>, attr: &str) -> Result, String> { let ty = value.custom.clone().ok_or_else(|| "no value".to_string())?; if let TypeEnum::TypeVariable(id) = ty.as_ref() { let v = self.get_variable_def(*id); if v.bound.is_empty() { return Err("no fields on unbounded type variable".into()); } let ty = v.bound[0].get_base(&self).and_then(|v| v.fields.get(attr)); if ty.is_none() { return Err("unknown field".into()); } for x in v.bound[1..].iter() { let ty1 = x.get_base(&self).and_then(|v| v.fields.get(attr)); if ty1 != ty { return Err("unknown field (type mismatch between variants)".into()); } } return Ok(Some(ty.unwrap().clone())); } match ty.get_base(&self) { Some(b) => match b.fields.get(attr) { Some(t) => Ok(Some(t.clone())), None => Err("no such field".into()), }, None => Err("this object has no fields".into()), } } fn infer_bool_ops(&self, values: &Vec>>) -> Result, String> { assert_eq!(values.len(), 2); let left = values[0].custom.clone().ok_or_else(|| "no value".to_string())?; let right = values[1].custom.clone().ok_or_else(|| "no value".to_string())?; let b = self.get_primitive(primitives::BOOL_TYPE); if left == b && right == b { Ok(Some(b)) } else { Err("bool operands must be bool".to_string()) } } fn infer_bin_ops(&self, left: &Box>>, op: &ast::Operator, right: &Box>>) -> Result, String> { inference_core::resolve_call( &self, Some(left.custom.clone().ok_or_else(|| "no value".to_string())?), magic_methods::binop_name(op), &[right.custom.clone().ok_or_else(|| "no value".to_string())?]) } fn infer_unary_ops(&self, op: &ast::Unaryop, operand: &Box>>) -> Result, String> { if let ast::Unaryop::Not = op { if (**operand).custom == Some(self.get_primitive(primitives::BOOL_TYPE)) { Ok(Some(self.get_primitive(primitives::BOOL_TYPE))) } else { Err("logical not must be applied to bool".into()) } } else { inference_core::resolve_call(&self, (**operand).custom.clone(), magic_methods::unaryop_name(op), &[]) } } fn infer_compare(&self, left: &Box>>, ops: &Vec, comparators: &Vec>>) -> Result, String> { assert!(comparators.len() > 0); if left.custom.is_none() || (!comparators.iter().all(|x| x.custom.is_some())) { Err("comparison operands must have type".into()) } else { let bool_type = Some(self.get_primitive(primitives::BOOL_TYPE)); let ty_first = inference_core::resolve_call( &self, Some(left.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()), magic_methods::comparison_name(&ops[0]).ok_or_else(|| "unsupported comparison".to_string())?, &[comparators[0].custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?])?; if ty_first != bool_type { return Err("comparison result must be boolean".into()); } for ((a, b), op) in comparators[..(comparators.len() - 1)] .iter() .zip(comparators[1..].iter()) .zip(ops[1..].iter()) { let ty = inference_core::resolve_call( &self, Some(a.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()), magic_methods::comparison_name(op).ok_or_else(|| "unsupported comparison".to_string())?, &[b.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()])?; if ty != bool_type { return Err("comparison result must be boolean".into()); } } Ok(bool_type) } } fn infer_call(&self, func: &Box>>, args: &Vec>>, _keywords: &Vec>>) -> Result, String> { if args.iter().all(|x| x.custom.is_some()) { match &func.node { ast::ExprKind::Name {id, ctx: _} => inference_core::resolve_call( &self, None, id, &args.iter().map(|x| x.custom.clone().unwrap()).collect::>()), ast::ExprKind::Attribute {value, attr, ctx: _} => inference_core::resolve_call( &self, Some(value.custom.clone().ok_or_else(|| "no value".to_string())?), &attr, &args.iter().map(|x| x.custom.clone().unwrap()).collect::>()), _ => Err("not supported".into()) } } else { Err("function params must have type".into()) } } fn infer_subscript(&self, value: &Box>>, slice: &Box>>) -> Result, String> { let t = if let TypeEnum::ParametricType(primitives::LIST_TYPE, ls) = value.custom.as_ref().ok_or_else(|| "no value".to_string())?.as_ref() { ls[0].clone() } else { return Err("subscript is not supported for types other than list".into()); }; if let ast::ExprKind::Slice {lower, upper, step} = &slice.node { let int32_type = self.get_primitive(primitives::INT32_TYPE); let l = lower.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("lower bound cannot be typped".to_string()))?; let u = upper.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("upper bound cannot be typped".to_string()))?; let s = step.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("step cannot be typped".to_string()))?; if l == &int32_type && u == &int32_type && s == &int32_type { Ok(value.custom.clone()) } else { Err("slice must be int32 type".into()) } } else if slice.custom == Some(self.get_primitive(primitives::INT32_TYPE)) { Ok(Some(t)) } else { Err("slice or index must be int32 type".into()) } } fn infer_if_expr(&self, test: &Box>>, body: &Box>>, orelse: &Box>>) -> Result, String> { if test.custom != Some(self.get_primitive(primitives::BOOL_TYPE)) { Err("test should be bool".into()) } else { if body.custom == orelse.custom { Ok(body.custom.clone()) } else { Err("divergent type at if expression".into()) } } } fn infer_list_comprehesion(&self, elt: &Box>>, generators: &Vec>>) -> Result, String> { if generators[0] .ifs .iter() .all(|x| x.custom == Some(self.get_primitive(primitives::BOOL_TYPE))) { Ok(Some(TypeEnum::ParametricType( primitives::LIST_TYPE, vec![elt.custom.clone().ok_or_else(|| "elements should have value".to_string())?]).into())) } else { Err("test must be bool".into()) } } // some pre-folds need special handling fn prefold_list_comprehension(&mut self, expr: ast::Expr>) -> Result>, String> { if let ast::Expr { location, custom, node: ast::ExprKind::ListComp { elt, generators}} = expr { // if is list comprehension, need special pre-fold if generators.len() != 1 { return Err("only 1 generator statement is supported".into()); } if generators[0].is_async { return Err("async is not supported".into()); } // fold iter first since it does not contain new identifiers let generators_first_folded = generators .into_iter() .map(|x| -> Result>, String> {Ok(ast::Comprehension { target: x.target, iter: Box::new(self.fold_expr(*x.iter)?), // fold here ifs: x.ifs, is_async: x.is_async })}) .collect::, _>>()?; if let TypeEnum::ParametricType( primitives::LIST_TYPE, ls) = generators_first_folded[0] .iter .custom .as_ref() .ok_or_else(|| "no value".to_string())? .as_ref() .clone() { self.with_scope(|ctx| -> Result>, String> { ctx.infer_simple_binding(&generators_first_folded[0].target, ls[0].clone())?; Ok(ast::Expr { location, custom, node: ast::ExprKind::ListComp { // now fold things with new name elt: Box::new(ctx.fold_expr(*elt)?), generators: generators_first_folded .into_iter() .map(|x| -> Result>, String> {Ok(ast::Comprehension { target: Box::new(ctx.fold_expr(*x.target)?), iter: x.iter, ifs: x .ifs .into_iter() .map(|x| ctx.fold_expr(x)) .collect::, _>>()?, is_async: x.is_async })}) .collect::, _>>()? } }) }).1 } else { Err("iteration is supported for list only".into()) } } else { panic!("this function is for list comprehensions only!"); } } fn infer_simple_binding(&mut self, name: &ast::Expr>, ty: Type) -> Result<(), String> { match &name.node { ast::ExprKind::Name {id, ctx: _} => { if id == "_" { Ok(()) } else if self.defined(id) { Err("duplicated naming".into()) } else { self.assign(id.clone(), ty, name.location)?; Ok(()) } } ast::ExprKind::Tuple {elts, ctx: _} => { if let TypeEnum::ParametricType(primitives::TUPLE_TYPE, ls) = ty.as_ref() { if elts.len() == ls.len() { for (a, b) in elts.iter().zip(ls.iter()) { self.infer_simple_binding(a, b.clone())?; } Ok(()) } else { Err("different length".into()) } } else { Err("not supported".into()) } } _ => Err("not supported".into()) } } } pub mod test { use crate::typecheck::{symbol_resolver::SymbolResolver, typedef::*, symbol_resolver::*, location::*}; use rustpython_parser::ast::{self, Expr, fold::Fold}; use super::*; pub fn new_ctx<'a>() -> InferenceContext<'a>{ struct S; impl SymbolResolver for S { fn get_symbol_location(&self, _str: &str) -> Option { None } fn get_symbol_type(&self, _str: &str) -> Option { None } fn get_symbol_value(&self, _str: &str) -> Option { None } } InferenceContext::new(primitives::basic_ctx(), Box::new(S{}), FileID(3)) } #[test] fn test_i32() { let mut inferencer = new_ctx(); let ast: Expr> = Expr { location: ast::Location::new(0, 0), custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(123.into()), kind: None } }; let new_ast = inferencer.fold_expr(ast); assert_eq!( new_ast, Ok(ast::Expr { location: ast::Location::new(0, 0), custom: Some(inferencer.get_primitive(primitives::INT32_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(123.into()), kind: None } }) ); } #[test] fn test_i64() { let mut inferencer = new_ctx(); let location = ast::Location::new(0, 0); let num: i64 = 99999999999; let ast: Expr> = Expr { location: location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(num.into()), kind: None, } }; let new_ast = inferencer.fold_expr(ast).unwrap(); assert_eq!( new_ast, Expr { location: location, custom: Some(inferencer.get_primitive(primitives::INT64_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(num.into()), kind: None, } } ); } #[test] fn test_list() { let mut inferencer = new_ctx(); let location = ast::Location::new(0, 0); let ast: Expr> = Expr { location, custom: None, node: ast::ExprKind::List { ctx: ast::ExprContext::Load, elts: vec![ Expr { location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(1.into()), kind: None, }, }, Expr { location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(2.into()), kind: None, }, }, ], } }; let new_ast = inferencer.fold_expr(ast).unwrap(); assert_eq!( new_ast, Expr { location, custom: Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![inferencer.get_primitive(primitives::INT32_TYPE).into()]).into()), node: ast::ExprKind::List { ctx: ast::ExprContext::Load, elts: vec![ Expr { location, custom: Some(inferencer.get_primitive(primitives::INT32_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(1.into()), kind: None, }, }, Expr { location, custom: Some(inferencer.get_primitive(primitives::INT32_TYPE)), // custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(2.into()), kind: None, }, }, ], } } ); } }