use std::convert::TryInto; use std::fs::create_dir_all; use crate::typecheck::context::InferenceContext; use crate::typecheck::inference_core; use crate::typecheck::magic_methods; use crate::typecheck::typedef::{Type, TypeEnum}; use crate::typecheck::primitives; use rustpython_parser::ast; use rustpython_parser::ast::fold::Fold; use super::inference_core::resolve_call; pub struct ExpressionTypeInferencer<'a> { pub ctx: InferenceContext<'a> } impl<'a> ExpressionTypeInferencer<'a> { // NOTE: add location here in the function parameter for better error message? fn infer_constant_val(&self, constant: &ast::Constant) -> Result, String> { match constant { ast::Constant::Bool(_) => Ok(Some(self.ctx.get_primitive(primitives::BOOL_TYPE))), ast::Constant::Int(val) => { let int32: Result = val.try_into(); let int64: Result = val.try_into(); if int32.is_ok() { Ok(Some(self.ctx.get_primitive(primitives::INT32_TYPE))) } else if int64.is_ok() { Ok(Some(self.ctx.get_primitive(primitives::INT64_TYPE))) } else { Err("Integer out of bound".into()) } }, ast::Constant::Float(_) => Ok(Some(self.ctx.get_primitive(primitives::FLOAT_TYPE))), ast::Constant::Tuple(vals) => { let result = vals .into_iter() .map(|x| self.infer_constant_val(x)) .collect::>(); if result.iter().all(|x| x.is_ok()) { Ok(Some(TypeEnum::ParametricType( primitives::TUPLE_TYPE, result .into_iter() .map(|x| x.unwrap().unwrap()) .collect::>(), ).into())) } else { Err("Some elements in tuple cannot be typed".into()) } } _ => Err("not supported".into()) } } fn infer_list_val(&self, elts: &Vec>>) -> Result, String> { if elts.is_empty() { Ok(Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![TypeEnum::BotType.into()]).into())) } else { let types = elts .iter() .map(|x| &x.custom) .collect::>(); if types.iter().all(|x| x.is_some()) { let head = types.iter().next().unwrap(); // here unwrap alone should be fine after the previous check if types.iter().all(|x| x.eq(head)) { Ok(Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![(*head).clone().unwrap()]).into())) } else { Err("inhomogeneous list is not allowed".into()) } } else { Err("list elements must have some type".into()) } } } fn infer_tuple_val(&self, elts: &Vec>>) -> Result, String> { let types = elts .iter() .map(|x| (x.custom).clone()) .collect::>(); if types.iter().all(|x| x.is_some()) { Ok(Some(TypeEnum::ParametricType( primitives::TUPLE_TYPE, types.into_iter().map(|x| x.unwrap()).collect()).into())) // unwrap alone should be fine after the previous check } else { Err("tuple elements must have some type".into()) } } fn infer_arrtibute(&self, value: &Box>>, attr: &str) -> Result, String> { let ty = value.custom.clone().ok_or_else(|| "no value".to_string())?; if let TypeEnum::TypeVariable(id) = ty.as_ref() { let v = self.ctx.get_variable_def(*id); if v.bound.is_empty() { return Err("no fields on unbounded type variable".into()); } let ty = v.bound[0].get_base(&self.ctx).and_then(|v| v.fields.get(attr)); if ty.is_none() { return Err("unknown field".into()); } for x in v.bound[1..].iter() { let ty1 = x.get_base(&self.ctx).and_then(|v| v.fields.get(attr)); if ty1 != ty { return Err("unknown field (type mismatch between variants)".into()); } } return Ok(Some(ty.unwrap().clone())); } match ty.get_base(&self.ctx) { Some(b) => match b.fields.get(attr) { Some(t) => Ok(Some(t.clone())), None => Err("no such field".into()), }, None => Err("this object has no fields".into()), } } fn infer_bool_ops(&self, values: &Vec>>) -> Result, String> { assert_eq!(values.len(), 2); let left = values[0].custom.clone().ok_or_else(|| "no value".to_string())?; let right = values[1].custom.clone().ok_or_else(|| "no value".to_string())?; let b = self.ctx.get_primitive(primitives::BOOL_TYPE); if left == b && right == b { Ok(Some(b)) } else { Err("bool operands must be bool".to_string()) } } fn _infer_bin_ops(&self, _left: &Box>>, _op: &ast::Operator, _right: &Box>>) -> Result, String> { Err("no need this function".into()) } fn infer_unary_ops(&self, op: &ast::Unaryop, operand: &Box>>) -> Result, String> { if let ast::Unaryop::Not = op { if (**operand).custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE)) { Ok(Some(self.ctx.get_primitive(primitives::BOOL_TYPE))) } else { Err("logical not must be applied to bool".into()) } } else { inference_core::resolve_call(&self.ctx, (**operand).custom.clone(), magic_methods::unaryop_name(op), &[]) } } fn infer_compare(&self, left: &Box>>, ops: &Vec, comparators: &Vec>>) -> Result, String> { assert!(comparators.len() > 0); if left.custom.is_none() || (!comparators.iter().all(|x| x.custom.is_some())) { Err("comparison operands must have type".into()) } else { let bool_type = Some(self.ctx.get_primitive(primitives::BOOL_TYPE)); let ty_first = resolve_call( &self.ctx, Some(left.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()), magic_methods::comparison_name(&ops[0]).ok_or_else(|| "unsupported comparison".to_string())?, &[comparators[0].custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?])?; if ty_first != bool_type { return Err("comparison result must be boolean".into()); } for ((a, b), op) in comparators[..(comparators.len() - 1)] .iter() .zip(comparators[1..].iter()) .zip(ops[1..].iter()) { let ty = resolve_call( &self.ctx, Some(a.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()), magic_methods::comparison_name(op).ok_or_else(|| "unsupported comparison".to_string())?, &[b.custom.clone().ok_or_else(|| "comparator must be able to be typed".to_string())?.clone()])?; if ty != bool_type { return Err("comparison result must be boolean".into()); } } Ok(bool_type) } } fn infer_call(&self, func: &Box>>, args: &Vec>>, _keywords: &Vec>>) -> Result, String> { if args.iter().all(|x| x.custom.is_some()) { match &func.node { ast::ExprKind::Name {id, ctx: _} => resolve_call( &self.ctx, None, id, &args.iter().map(|x| x.custom.clone().unwrap()).collect::>()), ast::ExprKind::Attribute {value, attr, ctx: _} => resolve_call( &self.ctx, Some(value.custom.clone().ok_or_else(|| "no value".to_string())?), &attr, &args.iter().map(|x| x.custom.clone().unwrap()).collect::>()), _ => Err("not supported".into()) } } else { Err("function params must have type".into()) } } fn infer_subscript(&self, value: &Box>>, slice: &Box>>) -> Result, String> { // let tt = value.custom.ok_or_else(|| "no value".to_string())?.as_ref(); let t = if let TypeEnum::ParametricType(primitives::LIST_TYPE, ls) = value.custom.as_ref().ok_or_else(|| "no value".to_string())?.as_ref() { ls[0].clone() } else { return Err("subscript is not supported for types other than list".into()); }; if let ast::ExprKind::Slice {lower, upper, step} = &slice.node { let int32_type = self.ctx.get_primitive(primitives::INT32_TYPE); let l = lower.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("lower bound cannot be typped".to_string()))?; let u = upper.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("upper bound cannot be typped".to_string()))?; let s = step.as_ref().map_or( Ok(&int32_type), |x| x.custom.as_ref().ok_or("step cannot be typped".to_string()))?; if l == &int32_type && u == &int32_type && s == &int32_type { Ok(value.custom.clone()) } else { Err("slice must be int32 type".into()) } } else if slice.custom == Some(self.ctx.get_primitive(primitives::INT32_TYPE)) { Ok(Some(t)) } else { Err("slice or index must be int32 type".into()) } } fn infer_if_expr(&self, test: &Box>>, body: &Box>>, orelse: &Box>>) -> Result, String> { if test.custom != Some(self.ctx.get_primitive(primitives::BOOL_TYPE)) { Err("test should be bool".into()) } else { if body.custom == orelse.custom { Ok(body.custom.clone()) } else { Err("divergent type at if expression".into()) } } } fn infer_list_comprehesion(&mut self, elt: &Box>>, generators: &Vec>>) -> Result, String> { if generators[0] .ifs .iter() .all(|x| x.custom == Some(self.ctx.get_primitive(primitives::BOOL_TYPE))) { Ok(Some(TypeEnum::ParametricType( primitives::LIST_TYPE, vec![elt.custom.clone().ok_or_else(|| "elements should have value".to_string())?]).into())) } else { Err("test must be bool".into()) } } fn fold_comprehension_first(&mut self, node: ast::Comprehension>) -> Result>, String> { Ok(ast::Comprehension { target: node.target, iter: Box::new(self.fold_expr(*node.iter)?), ifs: node.ifs, is_async: node.is_async }) } fn fold_comprehension_second(&mut self, node: ast::Comprehension>) -> Result>, String> { Ok(ast::Comprehension { target: Box::new(self.fold_expr(*node.target)?), iter: node.iter, ifs: node .ifs .into_iter() .map(|x| self.fold_expr(x)) .collect::, _>>()?, is_async: node.is_async }) } fn infer_simple_binding(&mut self, name: &ast::Expr>, ty: Type) -> Result<(), String> { match &name.node { ast::ExprKind::Name {id, ctx: _} => { if id == "_" { Ok(()) } else if self.ctx.defined(id) { Err("duplicated naming".into()) } else { self.ctx.assign(id.clone(), ty, name.location)?; Ok(()) } } ast::ExprKind::Tuple {elts, ctx: _} => { if let TypeEnum::ParametricType(primitives::TUPLE_TYPE, ls) = ty.as_ref() { if elts.len() == ls.len() { for (a, b) in elts.iter().zip(ls.iter()) { self.infer_simple_binding(a, b.clone())?; } Ok(()) } else { Err("different length".into()) } } else { Err("not supported".into()) } } _ => Err("not supported".into()) } } } impl<'a> ast::fold::Fold> for ExpressionTypeInferencer<'a> { type TargetU = Option; type Error = String; fn map_user(&mut self, user: Option) -> Result { Ok(user) } fn fold_expr(&mut self, node: ast::Expr>) -> Result, Self::Error> { assert_eq!(node.custom, None); // NOTE: should pass let mut expr = node; if let ast::Expr {location, custom, node: ast::ExprKind::ListComp {elt, generators } } = expr { // is list comprehension, only fold generators which does not include unknown identifiers introduced by list comprehension if generators.len() != 1 { return Err("only 1 generator statement is supported".into()) } let generators_first_folded = generators .into_iter() .map(|x| self.fold_comprehension_first(x)).collect::, _>>()?; let gen = &generators_first_folded[0]; let iter_type = gen.iter.custom.as_ref().ok_or("no value".to_string())?.as_ref(); if let TypeEnum::ParametricType(primitives::LIST_TYPE, ls) = iter_type { self.ctx.stack.level += 1; // FIXME: how to use with_scope?? self.infer_simple_binding(&gen.target, ls[0].clone())?; expr = ast::Expr { location, custom, node: ast::ExprKind::ListComp { elt: Box::new(self.fold_expr(*elt)?), generators: generators_first_folded .into_iter() .map(|x| self.fold_comprehension_second(x)) .collect::, _>>()? } }; self.ctx.stack.level -= 1; while !self.ctx.stack.sym_def.is_empty() { let (_, level) = self.ctx.stack.sym_def.last().unwrap(); if *level > self.ctx.stack.level { let (name, _) = self.ctx.stack.sym_def.pop().unwrap(); let (t, b, l) = self.ctx.sym_table.get_mut(&name).unwrap(); // set it to be unreadable *b = false; } else { break; } } } else { return Err("iteration is supported for list only".into()); } } else { // if not listcomp which requires special handling, skip current level, make sure child nodes have their type expr = ast::fold::fold_expr(self, expr)?; } match &expr.node { ast::ExprKind::Constant {value, kind: _} => Ok(ast::Expr { location: expr.location, custom: self.infer_constant_val(value)?, node: expr.node }), ast::ExprKind::Name {id, ctx: _} => Ok(ast::Expr { location: expr.location, custom: Some(self.ctx.resolve(id)?), node: expr.node }), ast::ExprKind::List {elts, ctx: _} => { Ok(ast::Expr { location: expr.location, custom: self.infer_list_val(elts)?, node: expr.node }) } ast::ExprKind::Tuple {elts, ctx: _} => Ok(ast::Expr { location: expr.location, custom: self.infer_tuple_val(elts)?, node: expr.node }), ast::ExprKind::Attribute {value, attr, ctx: _} => Ok(ast::Expr { location: expr.location, custom: self.infer_arrtibute(value, attr)?, node: expr.node }), ast::ExprKind::BoolOp {op: _, values} => Ok(ast::Expr { location: expr.location, custom: self.infer_bool_ops(values)?, node: expr.node }), ast::ExprKind::BinOp {left, op, right} => Ok(ast::Expr { location: expr.location, custom: inference_core::resolve_call( &self.ctx, Some(left.custom.clone().ok_or_else(|| "no value".to_string())?), magic_methods::binop_name(op), &[right.custom.clone().ok_or_else(|| "no value".to_string())?])?, node: expr.node }), ast::ExprKind::UnaryOp {op, operand} => Ok(ast::Expr { location: expr.location, custom: self.infer_unary_ops(op, operand)?, node: expr.node }), ast::ExprKind::Compare {left, ops, comparators} => Ok(ast::Expr { location: expr.location, custom: self.infer_compare(left, ops, comparators)?, node: expr.node }), ast::ExprKind::Call {func, args, keywords} => Ok(ast::Expr { location: expr.location, custom: self.infer_call(func, args, keywords)?, node: expr.node }), /* // REVIEW: add a new primitive type for slice and do type check of bounds here? ast::ExprKind::Slice {lower, upper, step } => Ok(ast::Expr { location: expr.location, custom: self.infer_slice(lower, upper, step)?, node: expr.node }), */ ast::ExprKind::Subscript {value, slice, ctx: _} => Ok(ast::Expr { location: expr.location, custom: self.infer_subscript(value, slice)?, node: expr.node }), ast::ExprKind::IfExp {test, body, orelse} => Ok(ast::Expr { location: expr.location, custom: self.infer_if_expr(test, body, orelse)?, node: expr.node }), ast::ExprKind::ListComp {elt, generators} => { Ok(ast::Expr { location: expr.location, custom: self.infer_list_comprehesion(elt, generators)?, node: expr.node }) } _ => { // not supported Err("not supported yet".into()) } } } } pub mod test { use crate::typecheck::{symbol_resolver::SymbolResolver, typedef::*, symbol_resolver::*, location::*}; use rustpython_parser::ast::{self, Expr, fold::Fold}; use super::*; pub fn new_ctx<'a>() -> ExpressionTypeInferencer<'a>{ struct S; impl SymbolResolver for S { fn get_symbol_location(&self, _str: &str) -> Option { None } fn get_symbol_type(&self, _str: &str) -> Option { None } fn get_symbol_value(&self, _str: &str) -> Option { None } } ExpressionTypeInferencer { ctx: InferenceContext::new(primitives::basic_ctx(), Box::new(S{}), FileID(3)), } } #[test] fn test_i64() { let mut inferencer = new_ctx(); let location = ast::Location::new(0, 0); let num: i64 = 99999999999; let ast: Expr> = Expr { location: location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(num.into()), kind: None, } }; let new_ast = inferencer.fold_expr(ast).unwrap(); assert_eq!( new_ast, Expr { location: location, custom: Some(inferencer.ctx.get_primitive(primitives::INT64_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(num.into()), kind: None, } } ); } #[test] fn test_list() { let mut inferencer = new_ctx(); let location = ast::Location::new(0, 0); let ast: Expr> = Expr { location, custom: None, node: ast::ExprKind::List { ctx: ast::ExprContext::Load, elts: vec![ Expr { location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(1.into()), kind: None, }, }, Expr { location, custom: None, node: ast::ExprKind::Constant { value: ast::Constant::Int(2.into()), kind: None, }, }, ], } }; let new_ast = inferencer.fold_expr(ast).unwrap(); assert_eq!( new_ast, Expr { location, custom: Some(TypeEnum::ParametricType(primitives::LIST_TYPE, vec![inferencer.ctx.get_primitive(primitives::INT32_TYPE).into()]).into()), node: ast::ExprKind::List { ctx: ast::ExprContext::Load, elts: vec![ Expr { location, custom: Some(inferencer.ctx.get_primitive(primitives::INT32_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(1.into()), kind: None, }, }, Expr { location, custom: Some(inferencer.ctx.get_primitive(primitives::INT32_TYPE)), node: ast::ExprKind::Constant { value: ast::Constant::Int(2.into()), kind: None, }, }, ], } } ); } }