use std::{convert::TryInto, iter::once}; use crate::{ top_level::DefinitionId, typecheck::typedef::{Type, TypeEnum}, }; use crate::{ top_level::{CodeGenContext, TopLevelDef}, typecheck::typedef::FunSignature, }; use inkwell::{ types::{BasicType, BasicTypeEnum}, values::BasicValueEnum, AddressSpace, }; use itertools::{chain, izip, zip, Itertools}; use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator}; impl<'ctx> CodeGenContext<'ctx> { fn get_subst_key(&mut self, obj: Option, fun: &FunSignature) -> String { let mut vars = obj .map(|ty| { if let TypeEnum::TObj { params, .. } = &*self.unifier.get_ty(ty) { params.clone() } else { unreachable!() } }) .unwrap_or_default(); vars.extend(fun.vars.iter()); let sorted = vars.keys().sorted(); sorted .map(|id| { self.unifier.stringify(vars[id], &mut |id| id.to_string(), &mut |id| id.to_string()) }) .join(", ") } fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize { let obj_id = match &*self.unifier.get_ty(ty) { TypeEnum::TObj { obj_id, .. } => *obj_id, // we cannot have other types, virtual type should be handled by function calls _ => unreachable!(), }; let def = &self.top_level.definitions.read()[obj_id.0]; let index = if let TopLevelDef::Class { fields, .. } = &*def.read() { fields.iter().find_position(|x| x.0 == attr).unwrap().0 } else { unreachable!() }; index } fn get_llvm_type(&mut self, ty: Type) -> BasicTypeEnum<'ctx> { use TypeEnum::*; // we assume the type cache should already contain primitive types, // and they should be passed by value instead of passing as pointer. self.type_cache.get(&ty).cloned().unwrap_or_else(|| match &*self.unifier.get_ty(ty) { TObj { obj_id, fields, .. } => { // a struct with fields in the order of declaration let defs = self.top_level.definitions.read(); let definition = defs.get(obj_id.0).unwrap(); let ty = if let TopLevelDef::Class { fields: fields_list, .. } = &*definition.read() { let fields = fields.borrow(); let fields = fields_list.iter().map(|f| self.get_llvm_type(fields[&f.0])).collect_vec(); self.ctx .struct_type(&fields, false) .ptr_type(AddressSpace::Generic) .into() } else { unreachable!() }; ty } TTuple { ty } => { // a struct with fields in the order present in the tuple let fields = ty.iter().map(|ty| self.get_llvm_type(*ty)).collect_vec(); self.ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into() } TList { ty } => { // a struct with an integer and a pointer to an array let element_type = self.get_llvm_type(*ty); let fields = [ self.ctx.i32_type().into(), element_type.ptr_type(AddressSpace::Generic).into(), ]; self.ctx.struct_type(&fields, false).ptr_type(AddressSpace::Generic).into() } _ => unreachable!(), }) } fn gen_call( &mut self, obj: Option<(Type, BasicValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), params: &[BasicValueEnum<'ctx>], ret: Type, ) -> Option> { let key = self.get_subst_key(obj.map(|(a, _)| a), fun.0); let defs = self.top_level.definitions.read(); let definition = defs.get(fun.1.0).unwrap(); let val = if let TopLevelDef::Function { instance_to_symbol, .. } = &*definition.read() { // TODO: codegen for function that are not yet generated let symbol = instance_to_symbol.get(&key).unwrap(); let fun_val = self.module.get_function(symbol).unwrap_or_else(|| { let params = fun.0.args.iter().map(|arg| self.get_llvm_type(arg.ty)).collect_vec(); let fun_ty = if self.unifier.unioned(ret, self.primitives.none) { self.ctx.void_type().fn_type(¶ms, false) } else { self.get_llvm_type(ret).fn_type(¶ms, false) }; self.module.add_function(symbol, fun_ty, None) }); // TODO: deal with default parameters and reordering based on keys self.builder.build_call(fun_val, params, "call").try_as_basic_value().left() } else { unreachable!() }; val } fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> { match value { Constant::Bool(v) => { assert!(self.unifier.unioned(ty, self.primitives.bool)); let ty = self.ctx.bool_type(); ty.const_int(if *v { 1 } else { 0 }, false).into() } Constant::Int(v) => { let ty = if self.unifier.unioned(ty, self.primitives.int32) { self.ctx.i32_type() } else if self.unifier.unioned(ty, self.primitives.int64) { self.ctx.i64_type() } else { unreachable!(); }; ty.const_int(v.try_into().unwrap(), false).into() } Constant::Float(v) => { assert!(self.unifier.unioned(ty, self.primitives.float)); let ty = self.ctx.f64_type(); ty.const_float(*v).into() } Constant::Tuple(v) => { let ty = self.unifier.get_ty(ty); let types = if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() }; let values = zip(types.into_iter(), v.iter()) .map(|(ty, v)| self.gen_const(v, ty)) .collect_vec(); let types = values.iter().map(BasicValueEnum::get_type).collect_vec(); let ty = self.ctx.struct_type(&types, false); ty.const_named_struct(&values).into() } _ => unimplemented!(), } } fn gen_int_ops( &mut self, op: &Operator, lhs: BasicValueEnum<'ctx>, rhs: BasicValueEnum<'ctx>, ) -> BasicValueEnum<'ctx> { let (lhs, rhs) = if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) { (lhs, rhs) } else { unreachable!() }; match op { Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(), Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(), Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(), Operator::Div => { let float = self.ctx.f64_type(); let left = self.builder.build_signed_int_to_float(lhs, float, "i2f"); let right = self.builder.build_signed_int_to_float(rhs, float, "i2f"); self.builder.build_float_div(left, right, "fdiv").into() } Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(), Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(), Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(), Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(), Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(), Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(), Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(), // special implementation? Operator::Pow => unimplemented!(), Operator::MatMult => unreachable!(), } } fn gen_float_ops( &mut self, op: &Operator, lhs: BasicValueEnum<'ctx>, rhs: BasicValueEnum<'ctx>, ) -> BasicValueEnum<'ctx> { let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) { (lhs, rhs) } else { unreachable!() }; match op { Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(), Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(), Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(), Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(), Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(), Operator::FloorDiv => { let div = self.builder.build_float_div(lhs, rhs, "fdiv"); let floor_intrinsic = self.module.get_function("llvm.floor.f64").unwrap_or_else(|| { let float = self.ctx.f64_type(); let fn_type = float.fn_type(&[float.into()], false); self.module.add_function("llvm.floor.f64", fn_type, None) }); self.builder .build_call(floor_intrinsic, &[div.into()], "floor") .try_as_basic_value() .left() .unwrap() } // special implementation? _ => unimplemented!(), } } pub fn gen_expr(&mut self, expr: &Expr>) -> BasicValueEnum<'ctx> { let zero = self.ctx.i32_type().const_int(0, false); match &expr.node { ExprKind::Constant { value, .. } => { let ty = expr.custom.unwrap(); self.gen_const(value, ty) } ExprKind::Name { id, .. } => { let ptr = self.var_assignment.get(id).unwrap(); self.builder.build_load(*ptr, "load") } ExprKind::List { elts, .. } => { // this shall be optimized later for constant primitive lists... // we should use memcpy for that instead of generating thousands of stores let elements = elts.iter().map(|x| self.gen_expr(x)).collect_vec(); let ty = if elements.is_empty() { self.ctx.i32_type().into() } else { elements[0].get_type() }; let arr_ptr = self.builder.build_array_alloca( ty, self.ctx.i32_type().const_int(elements.len() as u64, false), "tmparr", ); let arr_ty = self.ctx.struct_type( &[ self.ctx.i32_type().into(), ty.ptr_type(AddressSpace::Generic).into(), ], false, ); let arr_str_ptr = self.builder.build_alloca(arr_ty, "tmparrstr"); unsafe { self.builder.build_store( arr_str_ptr.const_in_bounds_gep(&[zero, zero]), self.ctx.i32_type().const_int(elements.len() as u64, false), ); self.builder.build_store( arr_str_ptr .const_in_bounds_gep(&[zero, self.ctx.i32_type().const_int(1, false)]), arr_ptr, ); let arr_offset = self.ctx.i32_type().const_int(1, false); for (i, v) in elements.iter().enumerate() { let ptr = self.builder.build_in_bounds_gep( arr_ptr, &[zero, arr_offset, self.ctx.i32_type().const_int(i as u64, false)], "arr_element", ); self.builder.build_store(ptr, *v); } } arr_str_ptr.into() } ExprKind::Tuple { elts, .. } => { let element_val = elts.iter().map(|x| self.gen_expr(x)).collect_vec(); let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec(); let tuple_ty = self.ctx.struct_type(&element_ty, false); let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple"); for (i, v) in element_val.into_iter().enumerate() { unsafe { let ptr = tuple_ptr.const_in_bounds_gep(&[ zero, self.ctx.i32_type().const_int(i as u64, false), ]); self.builder.build_store(ptr, v); } } tuple_ptr.into() } ExprKind::Attribute { value, attr, .. } => { // note that we would handle class methods directly in calls let index = self.get_attr_index(value.custom.unwrap(), attr); let val = self.gen_expr(value); let ptr = if let BasicValueEnum::PointerValue(v) = val { v } else { unreachable!(); }; unsafe { let ptr = ptr.const_in_bounds_gep(&[ zero, self.ctx.i32_type().const_int(index as u64, false), ]); self.builder.build_load(ptr, "field") } } ExprKind::BoolOp { op, values } => { // requires conditional branches for short-circuiting... let left = if let BasicValueEnum::IntValue(left) = self.gen_expr(&values[0]) { left } else { unreachable!() }; let current = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let a_bb = self.ctx.append_basic_block(current, "a"); let b_bb = self.ctx.append_basic_block(current, "b"); let cont_bb = self.ctx.append_basic_block(current, "cont"); self.builder.build_conditional_branch(left, a_bb, b_bb); let (a, b) = match op { Boolop::Or => { self.builder.position_at_end(a_bb); let a = self.ctx.bool_type().const_int(1, false); self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(b_bb); let b = if let BasicValueEnum::IntValue(b) = self.gen_expr(&values[1]) { b } else { unreachable!() }; self.builder.build_unconditional_branch(cont_bb); (a, b) } Boolop::And => { self.builder.position_at_end(a_bb); let a = if let BasicValueEnum::IntValue(a) = self.gen_expr(&values[1]) { a } else { unreachable!() }; self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(b_bb); let b = self.ctx.bool_type().const_int(0, false); self.builder.build_unconditional_branch(cont_bb); (a, b) } }; self.builder.position_at_end(cont_bb); let phi = self.builder.build_phi(self.ctx.bool_type(), "phi"); phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]); phi.as_basic_value() } ExprKind::BinOp { op, left, right } => { let ty1 = self.unifier.get_representative(left.custom.unwrap()); let ty2 = self.unifier.get_representative(left.custom.unwrap()); let left = self.gen_expr(left); let right = self.gen_expr(right); // we can directly compare the types, because we've got their representatives // which would be unchanged until further unification, which we would never do // when doing code generation for function instances if ty1 != ty2 { unimplemented!() } else if [self.primitives.int32, self.primitives.int64].contains(&ty1) { self.gen_int_ops(op, left, right) } else if self.primitives.float == ty1 { self.gen_float_ops(op, left, right) } else { unimplemented!() } } ExprKind::UnaryOp { op, operand } => { let ty = self.unifier.get_representative(operand.custom.unwrap()); let val = self.gen_expr(operand); if ty == self.primitives.bool { let val = if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() }; match op { ast::Unaryop::Invert | ast::Unaryop::Not => { self.builder.build_not(val, "not").into() } _ => val.into(), } } else if [self.primitives.int32, self.primitives.int64].contains(&ty) { let val = if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() }; match op { ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(), ast::Unaryop::Invert => self.builder.build_not(val, "not").into(), ast::Unaryop::Not => self .builder .build_int_compare( inkwell::IntPredicate::EQ, val, val.get_type().const_zero(), "not", ) .into(), _ => val.into(), } } else if ty == self.primitives.float { let val = if let BasicValueEnum::FloatValue(val) = val { val } else { unreachable!() }; match op { ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(), ast::Unaryop::Not => self .builder .build_float_compare( inkwell::FloatPredicate::OEQ, val, val.get_type().const_zero(), "not", ) .into(), _ => val.into(), } } else { unimplemented!() } } ExprKind::Compare { left, ops, comparators } => { izip!( chain(once(left.as_ref()), comparators.iter()), comparators.iter(), ops.iter(), ) .fold(None, |prev, (lhs, rhs, op)| { let ty = lhs.custom.unwrap(); let current = if [self.primitives.int32, self.primitives.int64, self.primitives.bool] .contains(&ty) { let (lhs, rhs) = if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (self.gen_expr(lhs), self.gen_expr(rhs)) { (lhs, rhs) } else { unreachable!() }; let op = match op { ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ, ast::Cmpop::NotEq => inkwell::IntPredicate::NE, ast::Cmpop::Lt => inkwell::IntPredicate::SLT, ast::Cmpop::LtE => inkwell::IntPredicate::SLE, ast::Cmpop::Gt => inkwell::IntPredicate::SGT, ast::Cmpop::GtE => inkwell::IntPredicate::SGE, _ => unreachable!(), }; self.builder.build_int_compare(op, lhs, rhs, "cmp") } else if ty == self.primitives.float { let (lhs, rhs) = if let ( BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs), ) = (self.gen_expr(lhs), self.gen_expr(rhs)) { (lhs, rhs) } else { unreachable!() }; let op = match op { ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ, ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE, ast::Cmpop::Lt => inkwell::FloatPredicate::OLT, ast::Cmpop::LtE => inkwell::FloatPredicate::OLE, ast::Cmpop::Gt => inkwell::FloatPredicate::OGT, ast::Cmpop::GtE => inkwell::FloatPredicate::OGE, _ => unreachable!(), }; self.builder.build_float_compare(op, lhs, rhs, "cmp") } else { unimplemented!() }; prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current)) }) .unwrap() .into() // as there should be at least 1 element, it should never be none } ExprKind::IfExp { test, body, orelse } => { let test = if let BasicValueEnum::IntValue(test) = self.gen_expr(test) { test } else { unreachable!() }; let current = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let then_bb = self.ctx.append_basic_block(current, "then"); let else_bb = self.ctx.append_basic_block(current, "else"); let cont_bb = self.ctx.append_basic_block(current, "cont"); self.builder.build_conditional_branch(test, then_bb, else_bb); self.builder.position_at_end(then_bb); let a = self.gen_expr(body); self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(else_bb); let b = self.gen_expr(orelse); self.builder.build_unconditional_branch(cont_bb); self.builder.position_at_end(cont_bb); let phi = self.builder.build_phi(a.get_type(), "ifexpr"); phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]); phi.as_basic_value() } _ => unimplemented!(), } } }