#![allow(non_camel_case_types, non_upper_case_globals)] use std::mem; use byteorder::{ByteOrder, LittleEndian}; pub const DW_EH_PE_omit: u8 = 0xFF; pub const DW_EH_PE_absptr: u8 = 0x00; pub const DW_EH_PE_uleb128: u8 = 0x01; pub const DW_EH_PE_udata2: u8 = 0x02; pub const DW_EH_PE_udata4: u8 = 0x03; pub const DW_EH_PE_udata8: u8 = 0x04; pub const DW_EH_PE_sleb128: u8 = 0x09; pub const DW_EH_PE_sdata2: u8 = 0x0A; pub const DW_EH_PE_sdata4: u8 = 0x0B; pub const DW_EH_PE_sdata8: u8 = 0x0C; pub const DW_EH_PE_pcrel: u8 = 0x10; pub const DW_EH_PE_textrel: u8 = 0x20; pub const DW_EH_PE_datarel: u8 = 0x30; pub const DW_EH_PE_funcrel: u8 = 0x40; pub const DW_EH_PE_aligned: u8 = 0x50; pub const DW_EH_PE_indirect: u8 = 0x80; pub struct DwarfReader<'a> { pub slice: &'a [u8], pub virt_addr: u32, } impl<'a> DwarfReader<'a> { pub fn new(slice: &[u8], virt_addr: u32) -> DwarfReader { DwarfReader { slice, virt_addr } } pub fn offset(&mut self, offset: i32) { self.slice = &self.slice[offset as usize..]; self.virt_addr = self.virt_addr.wrapping_add(offset as u32); } // ULEB128 and SLEB128 encodings are defined in Section 7.6 - "Variable // Length Data". pub fn read_uleb128(&mut self) -> u64 { let mut shift: usize = 0; let mut result: u64 = 0; let mut byte: u8; loop { byte = self.read_u8(); result |= ((byte & 0x7F) as u64) << shift; shift += 7; if byte & 0x80 == 0 { break; } } result } pub fn read_sleb128(&mut self) -> i64 { let mut shift: u32 = 0; let mut result: u64 = 0; let mut byte: u8; loop { byte = self.read_u8(); result |= ((byte & 0x7F) as u64) << shift; shift += 7; if byte & 0x80 == 0 { break; } } // sign-extend if shift < u64::BITS && (byte & 0x40) != 0 { result |= (!0 as u64) << shift; } result as i64 } pub fn read_u8(&mut self) -> u8 { let val = self.slice[0]; self.slice = &self.slice[1..]; val } } macro_rules! impl_read_fn { ( $($type: ty, $byteorder_fn: ident);* ) => { impl<'a> DwarfReader<'a> { $( pub fn $byteorder_fn(&mut self) -> $type { let val = LittleEndian::$byteorder_fn(self.slice); self.slice = &self.slice[mem::size_of::<$type>()..]; val } )* } } } impl_read_fn!( u16, read_u16; u32, read_u32; u64, read_u64; i16, read_i16; i32, read_i32; i64, read_i64 ); pub struct DwarfWriter<'a> { pub slice: &'a mut [u8], pub offset: usize, } impl<'a> DwarfWriter<'a> { pub fn new(slice: &mut [u8]) -> DwarfWriter { DwarfWriter { slice, offset: 0 } } pub fn write_u8(&mut self, data: u8) { self.slice[self.offset] = data; self.offset += 1; } pub fn write_u32(&mut self, data: u32) { LittleEndian::write_u32(&mut self.slice[self.offset..], data); self.offset += 4; } } fn read_encoded_pointer(reader: &mut DwarfReader, encoding: u8) -> Result { if encoding == DW_EH_PE_omit { return Err(()); } // DW_EH_PE_aligned implies it's an absolute pointer value // However, we are linking library for 32-bits architecture // The size of variable should be 4 bytes instead if encoding == DW_EH_PE_aligned { let shifted_virt_addr = round_up(reader.virt_addr as usize, mem::size_of::())?; let addr_inc = shifted_virt_addr - reader.virt_addr as usize; reader.slice = &reader.slice[addr_inc..]; reader.virt_addr = shifted_virt_addr as u32; return Ok(reader.read_u32() as usize); } match encoding & 0x0F { DW_EH_PE_absptr => Ok(reader.read_u32() as usize), DW_EH_PE_uleb128 => Ok(reader.read_uleb128() as usize), DW_EH_PE_udata2 => Ok(reader.read_u16() as usize), DW_EH_PE_udata4 => Ok(reader.read_u32() as usize), DW_EH_PE_udata8 => Ok(reader.read_u64() as usize), DW_EH_PE_sleb128 => Ok(reader.read_sleb128() as usize), DW_EH_PE_sdata2 => Ok(reader.read_i16() as usize), DW_EH_PE_sdata4 => Ok(reader.read_i32() as usize), DW_EH_PE_sdata8 => Ok(reader.read_i64() as usize), _ => Err(()), } } fn read_encoded_pointer_with_pc( reader: &mut DwarfReader, encoding: u8, ) -> Result { let entry_virt_addr = reader.virt_addr; let mut result = read_encoded_pointer(reader, encoding)?; // DW_EH_PE_aligned implies it's an absolute pointer value if encoding == DW_EH_PE_aligned { return Ok(result); } result = match encoding & 0x70 { DW_EH_PE_pcrel => result.wrapping_add(entry_virt_addr as usize), // .eh_frame normally would not have these kinds of relocations // These would not be supported by a dedicated linker relocation schemes for RISC-V DW_EH_PE_textrel | DW_EH_PE_datarel | DW_EH_PE_funcrel | DW_EH_PE_aligned => { unimplemented!() } // Other values should be impossible _ => unreachable!(), }; if encoding & DW_EH_PE_indirect != 0 { // There should not be a need for indirect addressing, as assembly code from // the dynamic library should not be freely moved relative to the EH frame. unreachable!() } Ok(result) } #[inline] fn round_up(unrounded: usize, align: usize) -> Result { if align.is_power_of_two() { Ok((unrounded + align - 1) & !(align - 1)) } else { Err(()) } } // Minimalistic structure to store everything needed for parsing FDEs to synthesize // .eh_frame_hdr section. Since we are only linking 1 object file, there should only be 1 call // frame information (CFI) record, so there should be only 1 common information entry (CIE). // So the class parses the only CIE on init, cache the encoding info, then parse the FDE on // iterations based on the cached encoding format. pub struct EH_Frame<'a> { // It refers to the augmentation data that corresponds to 'R' in the augmentation string pub fde_pointer_encoding: u8, pub fde_reader: DwarfReader<'a>, pub fde_sz: usize, } impl<'a> EH_Frame<'a> { pub fn new(eh_frame_slice: &[u8], eh_frame_addr: u32) -> Result { let mut cie_reader = DwarfReader::new(eh_frame_slice, eh_frame_addr); let eh_frame_size = eh_frame_slice.len(); let length = cie_reader.read_u32(); let fde_reader = match length { // eh_frame with 0 lengths means the CIE is terminated // while length == u32::MAX means that the length is only representable with 64 bits, // which does not make sense in a system with 32-bit address. 0 | 0xFFFFFFFF => unimplemented!(), _ => { let mut fde_reader = DwarfReader::new(cie_reader.slice, cie_reader.virt_addr); fde_reader.offset(length as i32); fde_reader } }; let fde_sz = eh_frame_size - mem::size_of::() - length as usize; // Routine check on the .eh_frame well-formness, in terms of CIE ID & Version args. assert_eq!(cie_reader.read_u32(), 0); assert_eq!(cie_reader.read_u8(), 1); // Parse augmentation string // The first character must be 'z', there is no way to proceed otherwise assert_eq!(cie_reader.read_u8(), b'z'); // Establish a pointer that skips ahead of the string // Skip code/data alignment factors & return address register along the way as well // We only tackle the case where 'z' and 'R' are part of the augmentation string, otherwise // we cannot get the addresses to make .eh_frame_hdr let mut aug_data_reader = DwarfReader::new(cie_reader.slice, cie_reader.virt_addr); let mut aug_str_len = 0; loop { if aug_data_reader.read_u8() == b'\0' { break; } aug_str_len += 1; } if aug_str_len == 0 { unimplemented!(); } aug_data_reader.read_uleb128(); // Code alignment factor aug_data_reader.read_sleb128(); // Data alignment factor aug_data_reader.read_uleb128(); // Return address register aug_data_reader.read_uleb128(); // Augmentation data length let mut fde_pointer_encoding = DW_EH_PE_omit; for _ in 0..aug_str_len { match cie_reader.read_u8() { b'L' => { aug_data_reader.read_u8(); } b'P' => { let encoding = aug_data_reader.read_u8(); read_encoded_pointer(&mut aug_data_reader, encoding)?; } b'R' => { fde_pointer_encoding = aug_data_reader.read_u8(); } // Other characters are not supported _ => unimplemented!(), } } assert_ne!(fde_pointer_encoding, DW_EH_PE_omit); Ok(EH_Frame { fde_pointer_encoding, fde_reader, fde_sz }) } pub fn iterate_fde(&self, callback: &mut dyn FnMut(u32, u32)) -> Result<(), ()> { // Parse each FDE to obtain the starting address that the FDE applies to // Send the FDE offset and the mentioned address to a callback that write up the // .eh_frame_hdr section let mut remaining_len = self.fde_sz; let mut reader = DwarfReader::new(self.fde_reader.slice, self.fde_reader.virt_addr); loop { if remaining_len == 0 { break; } let fde_virt_addr = reader.virt_addr; let length = match reader.read_u32() { 0 | 0xFFFFFFFF => unimplemented!(), other => other, }; // Remove the length of the header and the content from the counter remaining_len -= length as usize + mem::size_of::(); let mut next_fde_reader = DwarfReader::new(reader.slice, reader.virt_addr); next_fde_reader.offset(length as i32); // Skip CIE pointer offset reader.read_u32(); // Parse PC Begin using the encoding scheme mentioned in the CIE let pc_begin = read_encoded_pointer_with_pc(&mut reader, self.fde_pointer_encoding)?; callback(pc_begin as u32, fde_virt_addr); reader = next_fde_reader; } Ok(()) } } pub struct EH_Frame_Hdr<'a> { fde_writer: DwarfWriter<'a>, eh_frame_hdr_addr: u32, fdes: Vec<(u32, u32)>, } impl<'a> EH_Frame_Hdr<'a> { // Create a EH_Frame_Hdr object, and write out the fixed fields of .eh_frame_hdr to memory // eh_frame_ptr_enc will be 0x1B (PC-relative, 4 bytes) // table_enc will be 0x3B (Relative to the start of .eh_frame_hdr, 4 bytes) // Load address is not known at this point. pub fn new( eh_frame_hdr_slice: &mut [u8], eh_frame_hdr_addr: u32, eh_frame_addr: u32, ) -> EH_Frame_Hdr { let mut writer = DwarfWriter::new(eh_frame_hdr_slice); writer.write_u8(1); writer.write_u8(0x1B); writer.write_u8(0x03); writer.write_u8(0x3B); let eh_frame_offset = (eh_frame_addr).wrapping_sub(eh_frame_hdr_addr + ((mem::size_of::() as u32) * 4)); writer.write_u32(eh_frame_offset); writer.write_u32(0); EH_Frame_Hdr { fde_writer: writer, eh_frame_hdr_addr, fdes: Vec::new() } } fn fde_count_offset() -> usize { 8 } pub fn add_fde(&mut self, init_loc: u32, addr: u32) { self.fdes.push(( init_loc.wrapping_sub(self.eh_frame_hdr_addr), addr.wrapping_sub(self.eh_frame_hdr_addr), )); } pub fn finalize_fde(mut self) { self.fdes .sort_by(|(left_init_loc, _), (right_init_loc, _)| left_init_loc.cmp(right_init_loc)); for (init_loc, addr) in &self.fdes { self.fde_writer.write_u32(*init_loc); self.fde_writer.write_u32(*addr); } LittleEndian::write_u32(&mut self.fde_writer.slice[Self::fde_count_offset()..], self.fdes.len() as u32); } pub fn size_from_eh_frame(eh_frame: &[u8]) -> usize { // The virtual address of the EH frame does not matter in this case // Calculation of size does not involve modifying any headers let mut reader = DwarfReader::new(eh_frame, 0); let mut fde_count = 0; while !reader.slice.is_empty() { // The original length field should be able to hold the entire value. // The device memory space is limited to 32-bits addresses anyway. let entry_length = reader.read_u32(); if entry_length == 0 || entry_length == 0xFFFFFFFF { unimplemented!() } if reader.read_u32() != 0 { fde_count += 1; } reader.offset(entry_length as i32 - mem::size_of::() as i32) } 12 + fde_count * 8 } }