use itertools::Itertools; use std::cell::RefCell; use std::collections::HashMap; use std::iter::once; use std::rc::Rc; use super::unification_table::{UnificationKey, UnificationTable}; #[cfg(test)] mod test; /// Handle for a type, implementated as a key in the unification table. pub type Type = UnificationKey; #[derive(Clone)] pub struct TypeCell(Rc>); pub type Mapping = HashMap; type VarMap = Mapping; #[derive(Clone)] pub struct Call { pub posargs: Vec, pub kwargs: HashMap, pub ret: Type, pub fun: RefCell>, } #[derive(Clone)] pub struct FuncArg { pub name: String, pub ty: Type, pub is_optional: bool, } #[derive(Clone)] pub struct FunSignature { pub args: Vec, pub ret: Type, pub vars: VarMap, } // We use a lot of `Rc`/`RefCell`s here as we want to simplify our code. // We may not really need so much `Rc`s, but we would have to do complicated // stuffs otherwise. #[derive(Clone)] pub enum TypeEnum { TVar { // TODO: upper/lower bound id: u32, }, TSeq { map: Mapping, }, TTuple { ty: Vec, }, TList { ty: Type, }, TRecord { fields: Mapping, }, TObj { obj_id: usize, fields: Mapping, params: VarMap, }, TVirtual { ty: Type, }, TCall { calls: Vec>, }, TFunc(FunSignature), } // Order: // TVar // |--> TSeq // | |--> TTuple // | `--> TList // |--> TRecord // | |--> TObj // | `--> TVirtual // `--> TCall // `--> TFunc impl TypeEnum { pub fn get_type_name(&self) -> &'static str { // this function is for debugging only... // a proper to_str implementation requires the context match self { TypeEnum::TVar { .. } => "TVar", TypeEnum::TSeq { .. } => "TSeq", TypeEnum::TTuple { .. } => "TTuple", TypeEnum::TList { .. } => "TList", TypeEnum::TRecord { .. } => "TRecord", TypeEnum::TObj { .. } => "TObj", TypeEnum::TVirtual { .. } => "TVirtual", TypeEnum::TCall { .. } => "TCall", TypeEnum::TFunc { .. } => "TFunc", } } } pub struct Unifier { unification_table: UnificationTable>>, var_id: u32, } impl Unifier { /// Get an empty unifier pub fn new() -> Unifier { Unifier { unification_table: UnificationTable::new(), var_id: 0, } } /// Register a type to the unifier. /// Returns a key in the unification_table. pub fn add_ty(&mut self, a: TypeEnum) -> Type { self.unification_table.new_key(Rc::new(a.into())) } /// Get the TypeEnum of a type. pub fn get_ty(&mut self, a: Type) -> Rc> { self.unification_table.probe_value(a).clone() } /// Unify two types, i.e. a = b. pub fn unify(&mut self, a: Type, b: Type) -> Result<(), String> { self.unify_impl(a, b, false) } /// Get a fresh type variable. pub fn get_fresh_var(&mut self) -> (Type, u32) { let id = self.var_id + 1; self.var_id += 1; (self.add_ty(TypeEnum::TVar { id }), id) } /// Get string representation of the type pub fn stringify(&mut self, ty: Type, obj_to_name: &mut F, var_to_name: &mut G) -> String where F: FnMut(usize) -> String, G: FnMut(u32) -> String, { let ty = self.unification_table.probe_value(ty).clone(); let ty = ty.as_ref().borrow(); match &*ty { TypeEnum::TVar { id } => var_to_name(*id), TypeEnum::TSeq { map } => { let mut fields = map.iter().map(|(k, v)| { format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name)) }); format!("seq[{}]", fields.join(", ")) } TypeEnum::TTuple { ty } => { let mut fields = ty .iter() .map(|v| self.stringify(*v, obj_to_name, var_to_name)); format!("tuple[{}]", fields.join(", ")) } TypeEnum::TList { ty } => { format!("list[{}]", self.stringify(*ty, obj_to_name, var_to_name)) } TypeEnum::TVirtual { ty } => { format!("virtual[{}]", self.stringify(*ty, obj_to_name, var_to_name)) } TypeEnum::TRecord { fields } => { let mut fields = fields.iter().map(|(k, v)| { format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name)) }); format!("record[{}]", fields.join(", ")) } TypeEnum::TObj { obj_id, params, .. } => { let name = obj_to_name(*obj_id); if params.len() > 0 { let mut params = params .values() .map(|v| self.stringify(*v, obj_to_name, var_to_name)); format!("{}[{}]", name, params.join(", ")) } else { name } } TypeEnum::TCall { .. } => "call".to_owned(), TypeEnum::TFunc(signature) => { let params = signature .args .iter() .map(|arg| { format!( "{}={}", arg.name, self.stringify(arg.ty, obj_to_name, var_to_name) ) }) .join(", "); let ret = self.stringify(signature.ret, obj_to_name, var_to_name); format!("fn[[{}], {}]", params, ret) } } } fn unify_impl(&mut self, a: Type, b: Type, swapped: bool) -> Result<(), String> { use TypeEnum::*; let (ty_a_cell, ty_b_cell) = { if self.unification_table.unioned(a, b) { return Ok(()); } ( self.unification_table.probe_value(a).clone(), self.unification_table.probe_value(b).clone(), ) }; let (ty_a, ty_b) = { (ty_a_cell.borrow(), ty_b_cell.borrow()) }; match (&*ty_a, &*ty_b) { (TypeEnum::TVar { .. }, _) => { self.occur_check(a, b)?; self.set_a_to_b(a, b); } (TSeq { map: map1 }, TSeq { .. }) => { self.occur_check(a, b)?; drop(ty_b); if let TypeEnum::TSeq { map: map2 } = &mut *ty_b_cell.as_ref().borrow_mut() { // unify them to map2 for (key, value) in map1.iter() { if let Some(ty) = map2.get(key) { self.unify(*ty, *value)?; } else { map2.insert(*key, *value); } } } else { unreachable!() } self.set_a_to_b(a, b); } (TSeq { map: map1 }, TTuple { ty: types }) => { self.occur_check(a, b)?; let len = types.len() as i32; for (k, v) in map1.iter() { // handle negative index let ind = if *k < 0 { len + *k } else { *k }; if ind >= len || ind < 0 { return Err(format!( "Tuple index out of range. (Length: {}, Index: {})", types.len(), k )); } self.unify(*v, types[ind as usize])?; } self.set_a_to_b(a, b); } (TSeq { map: map1 }, TList { ty }) => { self.occur_check(a, b)?; for v in map1.values() { self.unify(*v, *ty)?; } self.set_a_to_b(a, b); } (TTuple { ty: ty1 }, TTuple { ty: ty2 }) => { if ty1.len() != ty2.len() { return Err(format!( "Cannot unify tuples with length {} and {}", ty1.len(), ty2.len() )); } for (x, y) in ty1.iter().zip(ty2.iter()) { self.unify(*x, *y)?; } self.set_a_to_b(a, b); } (TList { ty: ty1 }, TList { ty: ty2 }) => { self.unify(*ty1, *ty2)?; self.set_a_to_b(a, b); } (TRecord { fields: fields1 }, TRecord { .. }) => { self.occur_check(a, b)?; drop(ty_b); if let TypeEnum::TRecord { fields: fields2 } = &mut *ty_b_cell.as_ref().borrow_mut() { for (key, value) in fields1.iter() { if let Some(ty) = fields2.get(key) { self.unify(*ty, *value)?; } else { fields2.insert(key.clone(), *value); } } } else { unreachable!() } self.set_a_to_b(a, b); } ( TRecord { fields: fields1 }, TObj { fields: fields2, .. }, ) => { self.occur_check(a, b)?; for (key, value) in fields1.iter() { if let Some(ty) = fields2.get(key) { self.unify(*ty, *value)?; } else { return Err(format!("No such attribute {}", key)); } } self.set_a_to_b(a, b); } (TRecord { .. }, TVirtual { ty }) => { self.occur_check(a, b)?; self.unify(a, *ty)?; } ( TObj { obj_id: id1, params: params1, .. }, TObj { obj_id: id2, params: params2, .. }, ) => { if id1 != id2 { return Err(format!("Cannot unify objects with ID {} and {}", id1, id2)); } for (x, y) in params1.values().zip(params2.values()) { self.unify(*x, *y)?; } self.set_a_to_b(a, b); } (TVirtual { ty: ty1 }, TVirtual { ty: ty2 }) => { self.unify(*ty1, *ty2)?; self.set_a_to_b(a, b); } (TCall { calls: c1 }, TCall { .. }) => { drop(ty_b); if let TypeEnum::TCall { calls: c2 } = &mut *ty_b_cell.as_ref().borrow_mut() { c2.extend(c1.iter().cloned()); } else { unreachable!() } self.set_a_to_b(a, b); } (TCall { calls }, TFunc(signature)) => { self.occur_check(a, b)?; let required: Vec = signature .args .iter() .filter(|v| !v.is_optional) .map(|v| v.name.clone()) .rev() .collect(); for c in calls { let Call { posargs, kwargs, ret, fun, } = c.as_ref(); let instantiated = self.instantiate_fun(b, signature); let signature; let r = self.get_ty(instantiated); let r = r.as_ref().borrow(); if let TypeEnum::TFunc(s) = &*r { signature = s; } else { unreachable!(); } let mut required = required.clone(); let mut all_names: Vec<_> = signature .args .iter() .map(|v| (v.name.clone(), v.ty)) .rev() .collect(); for (i, t) in posargs.iter().enumerate() { if signature.args.len() <= i { return Err("Too many arguments.".to_string()); } if !required.is_empty() { required.pop(); } self.unify(all_names.pop().unwrap().1, *t)?; } for (k, t) in kwargs.iter() { if let Some(i) = required.iter().position(|v| v == k) { required.remove(i); } if let Some(i) = all_names.iter().position(|v| &v.0 == k) { self.unify(all_names.remove(i).1, *t)?; } else { return Err(format!("Unknown keyword argument {}", k)); } } if !required.is_empty() { return Err("Expected more arguments".to_string()); } self.unify(*ret, signature.ret)?; *fun.borrow_mut() = Some(instantiated); } self.set_a_to_b(a, b); } (TFunc(sign1), TFunc(sign2)) => { if !sign1.vars.is_empty() || !sign2.vars.is_empty() { return Err("Polymorphic function pointer is prohibited.".to_string()); } if sign1.args.len() != sign2.args.len() { return Err("Functions differ in number of parameters.".to_string()); } for (x, y) in sign1.args.iter().zip(sign2.args.iter()) { if x.name != y.name { return Err("Functions differ in parameter names.".to_string()); } if x.is_optional != y.is_optional { return Err("Functions differ in optional parameters.".to_string()); } self.unify(x.ty, y.ty)?; } self.unify(sign1.ret, sign2.ret)?; self.set_a_to_b(a, b); } _ => { if swapped { return self.incompatible_types(&*ty_a, &*ty_b); } else { self.unify_impl(b, a, true)?; } } } Ok(()) } fn set_a_to_b(&mut self, a: Type, b: Type) { // unify a and b together, and set the value to b's value. let table = &mut self.unification_table; let ty_b = table.probe_value(b).clone(); table.unify(a, b); table.set_value(a, ty_b) } fn incompatible_types(&self, a: &TypeEnum, b: &TypeEnum) -> Result<(), String> { Err(format!( "Cannot unify {} with {}", a.get_type_name(), b.get_type_name() )) } fn occur_check(&mut self, a: Type, b: Type) -> Result<(), String> { if self.unification_table.unioned(a, b) { return Err("Recursive type is prohibited.".to_owned()); } let ty = self.unification_table.probe_value(b).clone(); let ty = ty.borrow(); match &*ty { TypeEnum::TVar { .. } => { // TODO: occur check for bounds... } TypeEnum::TSeq { map } => { for t in map.values() { self.occur_check(a, *t)?; } } TypeEnum::TTuple { ty } => { for t in ty.iter() { self.occur_check(a, *t)?; } } TypeEnum::TList { ty } | TypeEnum::TVirtual { ty } => { self.occur_check(a, *ty)?; } TypeEnum::TRecord { fields } => { for t in fields.values() { self.occur_check(a, *t)?; } } TypeEnum::TObj { params: map, .. } => { for t in map.values() { self.occur_check(a, *t)?; } } TypeEnum::TCall { calls } => { for t in calls .iter() .map(|call| { call.posargs .iter() .chain(call.kwargs.values()) .chain(once(&call.ret)) }) .flatten() { self.occur_check(a, *t)?; } } TypeEnum::TFunc(FunSignature { args, ret, vars: params, }) => { for t in args .iter() .map(|v| &v.ty) .chain(params.values()) .chain(once(ret)) { self.occur_check(a, *t)?; } } }; Ok(()) } /// Substitute type variables within a type into other types. /// If this returns Some(T), T would be the substituted type. /// If this returns None, the result type would be the original type /// (no substitution has to be done). fn subst(&mut self, a: Type, mapping: &VarMap) -> Option { let ty_cell = self.unification_table.probe_value(a).clone(); let ty = ty_cell.borrow(); // this function would only be called when we instantiate functions. // function type signature should ONLY contain concrete types and type // variables, i.e. things like TRecord, TCall should not occur, and we // should be safe to not implement the substitution for those variants. match &*ty { TypeEnum::TVar { id } => mapping.get(&id).cloned(), TypeEnum::TSeq { map } => self .subst_map(map, mapping) .map(|m| self.add_ty(TypeEnum::TSeq { map: m })), TypeEnum::TTuple { ty } => { let mut new_ty = None; for (i, t) in ty.iter().enumerate() { if let Some(t1) = self.subst(*t, mapping) { if new_ty.is_none() { new_ty = Some(ty.clone()); } new_ty.as_mut().unwrap()[i] = t1; } } new_ty.map(|t| self.add_ty(TypeEnum::TTuple { ty: t })) } TypeEnum::TList { ty } => self .subst(*ty, mapping) .map(|t| self.add_ty(TypeEnum::TList { ty: t })), TypeEnum::TVirtual { ty } => self .subst(*ty, mapping) .map(|t| self.add_ty(TypeEnum::TVirtual { ty: t })), TypeEnum::TObj { obj_id, fields, params, } => { // Type variables in field types must be present in the type parameter. // If the mapping does not contain any type variables in the // parameter list, we don't need to substitute the fields. // This is also used to prevent infinite substitution... let need_subst = params.values().any(|v| { let ty_cell = self.unification_table.probe_value(*v); let ty = ty_cell.borrow(); if let TypeEnum::TVar { id } = &*ty { mapping.contains_key(&id) } else { false } }); if need_subst { let obj_id = *obj_id; let params = self .subst_map(¶ms, mapping) .unwrap_or_else(|| params.clone()); let fields = self .subst_map(&fields, mapping) .unwrap_or_else(|| fields.clone()); Some(self.add_ty(TypeEnum::TObj { obj_id, params, fields, })) } else { None } } TypeEnum::TFunc(FunSignature { args, ret, vars: params, }) => { let new_params = self.subst_map(params, mapping); let new_ret = self.subst(*ret, mapping); let mut new_args = None; for (i, t) in args.iter().enumerate() { if let Some(t1) = self.subst(t.ty, mapping) { if new_args.is_none() { new_args = Some(args.clone()); } new_args.as_mut().unwrap()[i] = FuncArg { name: t.name.clone(), ty: t1, is_optional: t.is_optional, }; } } if new_params.is_some() || new_ret.is_some() || new_args.is_some() { let params = new_params.unwrap_or_else(|| params.clone()); let ret = new_ret.unwrap_or_else(|| *ret); let args = new_args.unwrap_or_else(|| args.clone()); Some(self.add_ty(TypeEnum::TFunc(FunSignature { args, ret, vars: params, }))) } else { None } } _ => unimplemented!(), } } fn subst_map(&mut self, map: &Mapping, mapping: &VarMap) -> Option> where K: std::hash::Hash + std::cmp::Eq + std::clone::Clone, { let mut map2 = None; for (k, v) in map.iter() { if let Some(v1) = self.subst(*v, mapping) { if map2.is_none() { map2 = Some(map.clone()); } *map2.as_mut().unwrap().get_mut(k).unwrap() = v1; } } map2 } /// Instantiate a function if it hasn't been instntiated. /// Returns Some(T) where T is the instantiated type. /// Returns None if the function is already instantiated. fn instantiate_fun(&mut self, ty: Type, fun: &FunSignature) -> Type { let mut instantiated = false; for (k, v) in fun.vars.iter() { if let TypeEnum::TVar { id } = &*self.unification_table.probe_value(*v).as_ref().borrow() { if k != id { instantiated = true; break; } } else { instantiated = true; break; } } if instantiated { ty } else { let mapping = fun .vars .iter() .map(|(k, _)| (*k, self.get_fresh_var().0)) .collect(); self.subst(ty, &mapping).unwrap_or(ty) } } /// Check whether two types are equal. fn eq(&mut self, a: Type, b: Type) -> bool { if a == b { return true; } let (ty_a, ty_b) = { let table = &mut self.unification_table; if table.unioned(a, b) { return true; } (table.probe_value(a).clone(), table.probe_value(b).clone()) }; let ty_a = ty_a.borrow(); let ty_b = ty_b.borrow(); match (&*ty_a, &*ty_b) { (TypeEnum::TVar { id: id1 }, TypeEnum::TVar { id: id2 }) => id1 == id2, (TypeEnum::TSeq { map: map1 }, TypeEnum::TSeq { map: map2 }) => self.map_eq(map1, map2), (TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => { ty1.len() == ty2.len() && ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2)) } (TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 }) | (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => { self.eq(*ty1, *ty2) } (TypeEnum::TRecord { fields: fields1 }, TypeEnum::TRecord { fields: fields2 }) => { self.map_eq(fields1, fields2) } ( TypeEnum::TObj { obj_id: id1, params: params1, .. }, TypeEnum::TObj { obj_id: id2, params: params2, .. }, ) => id1 == id2 && self.map_eq(params1, params2), // TCall and TFunc are not yet implemented _ => false, } } fn map_eq(&mut self, map1: &Mapping, map2: &Mapping) -> bool where K: std::hash::Hash + std::cmp::Eq + std::clone::Clone, { if map1.len() != map2.len() { return false; } for (k, v) in map1.iter() { if !map2.get(k).map(|v1| self.eq(*v, *v1)).unwrap_or(false) { return false; } } true } }