refactored typedef

This commit is contained in:
pca006132 2021-07-23 15:25:44 +08:00
parent 88c45172b2
commit ddcf4b7e39
5 changed files with 498 additions and 586 deletions

1
nac3core/rustfmt.toml Normal file
View File

@ -0,0 +1 @@
use_small_heuristics = "Max"

View File

@ -32,7 +32,7 @@ impl<'a> Inferencer<'a> {
// there are some cases where the custom field is None // there are some cases where the custom field is None
if let Some(ty) = &expr.custom { if let Some(ty) = &expr.custom {
let ty = self.unifier.get_ty(*ty); let ty = self.unifier.get_ty(*ty);
let ty = ty.as_ref().borrow(); let ty = ty.as_ref();
if !ty.is_concrete() { if !ty.is_concrete() {
return Err(format!( return Err(format!(
"expected concrete type at {} but got {}", "expected concrete type at {} but got {}",

View File

@ -54,17 +54,11 @@ impl<'a> fold::Fold<()> for Inferencer<'a> {
fn fold_stmt(&mut self, node: ast::Stmt<()>) -> Result<ast::Stmt<Self::TargetU>, Self::Error> { fn fold_stmt(&mut self, node: ast::Stmt<()>) -> Result<ast::Stmt<Self::TargetU>, Self::Error> {
let stmt = match node.node { let stmt = match node.node {
// we don't want fold over type annotation // we don't want fold over type annotation
ast::StmtKind::AnnAssign { ast::StmtKind::AnnAssign { target, annotation, value, simple } => {
target,
annotation,
value,
simple,
} => {
let target = Box::new(fold::fold_expr(self, *target)?); let target = Box::new(fold::fold_expr(self, *target)?);
let value = if let Some(v) = value { let value = if let Some(v) = value {
let ty = Box::new(fold::fold_expr(self, *v)?); let ty = Box::new(fold::fold_expr(self, *v)?);
self.unifier self.unifier.unify(target.custom.unwrap(), ty.custom.unwrap())?;
.unify(target.custom.unwrap(), ty.custom.unwrap())?;
Some(ty) Some(ty)
} else { } else {
None None
@ -73,37 +67,27 @@ impl<'a> fold::Fold<()> for Inferencer<'a> {
.resolver .resolver
.parse_type_name(annotation.as_ref()) .parse_type_name(annotation.as_ref())
.ok_or_else(|| "cannot parse type name".to_string())?; .ok_or_else(|| "cannot parse type name".to_string())?;
self.unifier self.unifier.unify(annotation_type, target.custom.unwrap())?;
.unify(annotation_type, target.custom.unwrap())?;
let annotation = Box::new(NaiveFolder().fold_expr(*annotation)?); let annotation = Box::new(NaiveFolder().fold_expr(*annotation)?);
Located { Located {
location: node.location, location: node.location,
custom: None, custom: None,
node: ast::StmtKind::AnnAssign { node: ast::StmtKind::AnnAssign { target, annotation, value, simple },
target,
annotation,
value,
simple,
},
} }
} }
_ => fold::fold_stmt(self, node)?, _ => fold::fold_stmt(self, node)?,
}; };
match &stmt.node { match &stmt.node {
ast::StmtKind::For { target, iter, .. } => { ast::StmtKind::For { target, iter, .. } => {
let list = self.unifier.add_ty(TypeEnum::TList { let list = self.unifier.add_ty(TypeEnum::TList { ty: target.custom.unwrap() });
ty: target.custom.unwrap(),
});
self.unifier.unify(list, iter.custom.unwrap())?; self.unifier.unify(list, iter.custom.unwrap())?;
} }
ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => { ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => {
self.unifier self.unifier.unify(test.custom.unwrap(), self.primitives.bool)?;
.unify(test.custom.unwrap(), self.primitives.bool)?;
} }
ast::StmtKind::Assign { targets, value, .. } => { ast::StmtKind::Assign { targets, value, .. } => {
for target in targets.iter() { for target in targets.iter() {
self.unifier self.unifier.unify(target.custom.unwrap(), value.custom.unwrap())?;
.unify(target.custom.unwrap(), value.custom.unwrap())?;
} }
} }
ast::StmtKind::AnnAssign { .. } | ast::StmtKind::Expr { .. } => {} ast::StmtKind::AnnAssign { .. } | ast::StmtKind::Expr { .. } => {}
@ -127,11 +111,7 @@ impl<'a> fold::Fold<()> for Inferencer<'a> {
fn fold_expr(&mut self, node: ast::Expr<()>) -> Result<ast::Expr<Self::TargetU>, Self::Error> { fn fold_expr(&mut self, node: ast::Expr<()>) -> Result<ast::Expr<Self::TargetU>, Self::Error> {
let expr = match node.node { let expr = match node.node {
ast::ExprKind::Call { ast::ExprKind::Call { func, args, keywords } => {
func,
args,
keywords,
} => {
return self.fold_call(node.location, *func, args, keywords); return self.fold_call(node.location, *func, args, keywords);
} }
ast::ExprKind::Lambda { args, body } => { ast::ExprKind::Lambda { args, body } => {
@ -147,19 +127,15 @@ impl<'a> fold::Fold<()> for Inferencer<'a> {
ast::ExprKind::Name { id, .. } => Some(self.infer_identifier(id)?), ast::ExprKind::Name { id, .. } => Some(self.infer_identifier(id)?),
ast::ExprKind::List { elts, .. } => Some(self.infer_list(elts)?), ast::ExprKind::List { elts, .. } => Some(self.infer_list(elts)?),
ast::ExprKind::Tuple { elts, .. } => Some(self.infer_tuple(elts)?), ast::ExprKind::Tuple { elts, .. } => Some(self.infer_tuple(elts)?),
ast::ExprKind::Attribute { ast::ExprKind::Attribute { value, attr, ctx: _ } => {
value, Some(self.infer_attribute(value, attr)?)
attr, }
ctx: _,
} => Some(self.infer_attribute(value, attr)?),
ast::ExprKind::BoolOp { values, .. } => Some(self.infer_bool_ops(values)?), ast::ExprKind::BoolOp { values, .. } => Some(self.infer_bool_ops(values)?),
ast::ExprKind::BinOp { left, op, right } => Some(self.infer_bin_ops(left, op, right)?), ast::ExprKind::BinOp { left, op, right } => Some(self.infer_bin_ops(left, op, right)?),
ast::ExprKind::UnaryOp { op, operand } => Some(self.infer_unary_ops(op, operand)?), ast::ExprKind::UnaryOp { op, operand } => Some(self.infer_unary_ops(op, operand)?),
ast::ExprKind::Compare { ast::ExprKind::Compare { left, ops, comparators } => {
left, Some(self.infer_compare(left, ops, comparators)?)
ops, }
comparators,
} => Some(self.infer_compare(left, ops, comparators)?),
ast::ExprKind::Subscript { value, slice, .. } => { ast::ExprKind::Subscript { value, slice, .. } => {
Some(self.infer_subscript(value.as_ref(), slice.as_ref())?) Some(self.infer_subscript(value.as_ref(), slice.as_ref())?)
} }
@ -172,11 +148,7 @@ impl<'a> fold::Fold<()> for Inferencer<'a> {
ast::ExprKind::Slice { .. } => None, // we don't need it for slice ast::ExprKind::Slice { .. } => None, // we don't need it for slice
_ => return Err("not supported yet".into()), _ => return Err("not supported yet".into()),
}; };
Ok(ast::Expr { Ok(ast::Expr { custom, location: expr.location, node: expr.node })
custom,
location: expr.location,
node: expr.node,
})
} }
} }
@ -196,16 +168,12 @@ impl<'a> Inferencer<'a> {
params: Vec<Type>, params: Vec<Type>,
ret: Type, ret: Type,
) -> InferenceResult { ) -> InferenceResult {
let call = Rc::new(Call { let call =
posargs: params, Rc::new(Call { posargs: params, kwargs: HashMap::new(), ret, fun: RefCell::new(None) });
kwargs: HashMap::new(),
ret,
fun: RefCell::new(None),
});
self.calls.push(call.clone()); self.calls.push(call.clone());
let call = self.unifier.add_ty(TypeEnum::TCall { calls: vec![call] }); let call = self.unifier.add_ty(TypeEnum::TCall(vec![call].into()));
let fields = once((method, call)).collect(); let fields = once((method, call)).collect();
let record = self.unifier.add_ty(TypeEnum::TRecord { fields }); let record = self.unifier.add_record(fields);
self.constrain(obj, record)?; self.constrain(obj, record)?;
Ok(ret) Ok(ret)
} }
@ -248,11 +216,7 @@ impl<'a> Inferencer<'a> {
let fun = FunSignature { let fun = FunSignature {
args: fn_args args: fn_args
.iter() .iter()
.map(|(k, ty)| FuncArg { .map(|(k, ty)| FuncArg { name: k.clone(), ty: *ty, is_optional: false })
name: k.clone(),
ty: *ty,
is_optional: false,
})
.collect(), .collect(),
ret, ret,
vars: Default::default(), vars: Default::default(),
@ -266,10 +230,7 @@ impl<'a> Inferencer<'a> {
} }
Ok(Located { Ok(Located {
location, location,
node: ExprKind::Lambda { node: ExprKind::Lambda { args: args.into(), body: body.into() },
args: args.into(),
body: body.into(),
},
custom: Some(self.unifier.add_ty(TypeEnum::TFunc(fun))), custom: Some(self.unifier.add_ty(TypeEnum::TFunc(fun))),
}) })
} }
@ -282,7 +243,7 @@ impl<'a> Inferencer<'a> {
) -> Result<ast::Expr<Option<Type>>, String> { ) -> Result<ast::Expr<Option<Type>>, String> {
if generators.len() != 1 { if generators.len() != 1 {
return Err( return Err(
"Only 1 generator statement for list comprehension is supported.".to_string(), "Only 1 generator statement for list comprehension is supported.".to_string()
); );
} }
let variable_mapping = self.variable_mapping.clone(); let variable_mapping = self.variable_mapping.clone();
@ -309,22 +270,16 @@ impl<'a> Inferencer<'a> {
// iter should be a list of targets... // iter should be a list of targets...
// actually it should be an iterator of targets, but we don't have iter type for now // actually it should be an iterator of targets, but we don't have iter type for now
let list = new_context.unifier.add_ty(TypeEnum::TList { let list = new_context.unifier.add_ty(TypeEnum::TList { ty: target.custom.unwrap() });
ty: target.custom.unwrap(),
});
new_context.unifier.unify(iter.custom.unwrap(), list)?; new_context.unifier.unify(iter.custom.unwrap(), list)?;
// if conditions should be bool // if conditions should be bool
for v in ifs.iter() { for v in ifs.iter() {
new_context new_context.unifier.unify(v.custom.unwrap(), new_context.primitives.bool)?;
.unifier
.unify(v.custom.unwrap(), new_context.primitives.bool)?;
} }
Ok(Located { Ok(Located {
location, location,
custom: Some(new_context.unifier.add_ty(TypeEnum::TList { custom: Some(new_context.unifier.add_ty(TypeEnum::TList { ty: elt.custom.unwrap() })),
ty: elt.custom.unwrap(),
})),
node: ExprKind::ListComp { node: ExprKind::ListComp {
elt: Box::new(elt), elt: Box::new(elt),
generators: vec![ast::Comprehension { generators: vec![ast::Comprehension {
@ -344,77 +299,68 @@ impl<'a> Inferencer<'a> {
mut args: Vec<ast::Expr<()>>, mut args: Vec<ast::Expr<()>>,
keywords: Vec<Located<ast::KeywordData>>, keywords: Vec<Located<ast::KeywordData>>,
) -> Result<ast::Expr<Option<Type>>, String> { ) -> Result<ast::Expr<Option<Type>>, String> {
let func = if let Located { let func =
location: func_location, if let Located { location: func_location, custom, node: ExprKind::Name { id, ctx } } =
custom, func
node: ExprKind::Name { id, ctx }, {
} = func // handle special functions that cannot be typed in the usual way...
{ if id == "virtual" {
// handle special functions that cannot be typed in the usual way... if args.is_empty() || args.len() > 2 || !keywords.is_empty() {
if id == "virtual" { return Err(
if args.is_empty() || args.len() > 2 || !keywords.is_empty() { "`virtual` can only accept 1/2 positional arguments.".to_string()
return Err("`virtual` can only accept 1/2 positional arguments.".to_string()); );
}
let arg0 = self.fold_expr(args.remove(0))?;
let ty = if let Some(arg) = args.pop() {
self.resolver
.parse_type_name(&arg)
.ok_or_else(|| "error parsing type".to_string())?
} else {
self.unifier.get_fresh_var().0
};
let custom = Some(self.unifier.add_ty(TypeEnum::TVirtual { ty }));
return Ok(Located {
location,
custom,
node: ExprKind::Call {
func: Box::new(Located {
custom: None,
location: func.location,
node: ExprKind::Name { id, ctx },
}),
args: vec![arg0],
keywords: vec![],
},
});
}
// int64 is special because its argument can be a constant larger than int32
if id == "int64" && args.len() == 1 {
if let ExprKind::Constant {
value: ast::Constant::Int(val),
kind,
} = &args[0].node
{
let int64: Result<i64, _> = val.try_into();
let custom;
if int64.is_ok() {
custom = Some(self.primitives.int64);
} else {
return Err("Integer out of bound".into());
} }
let arg0 = self.fold_expr(args.remove(0))?;
let ty = if let Some(arg) = args.pop() {
self.resolver
.parse_type_name(&arg)
.ok_or_else(|| "error parsing type".to_string())?
} else {
self.unifier.get_fresh_var().0
};
let custom = Some(self.unifier.add_ty(TypeEnum::TVirtual { ty }));
return Ok(Located { return Ok(Located {
location: args[0].location, location,
custom, custom,
node: ExprKind::Constant { node: ExprKind::Call {
value: ast::Constant::Int(val.clone()), func: Box::new(Located {
kind: kind.clone(), custom: None,
location: func.location,
node: ExprKind::Name { id, ctx },
}),
args: vec![arg0],
keywords: vec![],
}, },
}); });
} }
} // int64 is special because its argument can be a constant larger than int32
Located { if id == "int64" && args.len() == 1 {
location: func_location, if let ExprKind::Constant { value: ast::Constant::Int(val), kind } =
custom, &args[0].node
node: ExprKind::Name { id, ctx }, {
} let int64: Result<i64, _> = val.try_into();
} else { let custom;
func if int64.is_ok() {
}; custom = Some(self.primitives.int64);
} else {
return Err("Integer out of bound".into());
}
return Ok(Located {
location: args[0].location,
custom,
node: ExprKind::Constant {
value: ast::Constant::Int(val.clone()),
kind: kind.clone(),
},
});
}
}
Located { location: func_location, custom, node: ExprKind::Name { id, ctx } }
} else {
func
};
let func = Box::new(self.fold_expr(func)?); let func = Box::new(self.fold_expr(func)?);
let args = args let args = args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
.into_iter()
.map(|v| self.fold_expr(v))
.collect::<Result<Vec<_>, _>>()?;
let keywords = keywords let keywords = keywords
.into_iter() .into_iter()
.map(|v| fold::fold_keyword(self, v)) .map(|v| fold::fold_keyword(self, v))
@ -430,18 +376,10 @@ impl<'a> Inferencer<'a> {
ret, ret,
}); });
self.calls.push(call.clone()); self.calls.push(call.clone());
let call = self.unifier.add_ty(TypeEnum::TCall { calls: vec![call] }); let call = self.unifier.add_ty(TypeEnum::TCall(vec![call].into()));
self.unifier.unify(func.custom.unwrap(), call)?; self.unifier.unify(func.custom.unwrap(), call)?;
Ok(Located { Ok(Located { location, custom: Some(ret), node: ExprKind::Call { func, args, keywords } })
location,
custom: Some(ret),
node: ExprKind::Call {
func,
args,
keywords,
},
})
} }
fn infer_identifier(&mut self, id: &str) -> InferenceResult { fn infer_identifier(&mut self, id: &str) -> InferenceResult {
@ -493,7 +431,7 @@ impl<'a> Inferencer<'a> {
fn infer_attribute(&mut self, value: &ast::Expr<Option<Type>>, attr: &str) -> InferenceResult { fn infer_attribute(&mut self, value: &ast::Expr<Option<Type>>, attr: &str) -> InferenceResult {
let (attr_ty, _) = self.unifier.get_fresh_var(); let (attr_ty, _) = self.unifier.get_fresh_var();
let fields = once((attr.to_string(), attr_ty)).collect(); let fields = once((attr.to_string(), attr_ty)).collect();
let record = self.unifier.add_ty(TypeEnum::TRecord { fields }); let record = self.unifier.add_record(fields);
self.constrain(value.custom.unwrap(), record)?; self.constrain(value.custom.unwrap(), record)?;
Ok(attr_ty) Ok(attr_ty)
} }
@ -540,9 +478,8 @@ impl<'a> Inferencer<'a> {
) -> InferenceResult { ) -> InferenceResult {
let boolean = self.primitives.bool; let boolean = self.primitives.bool;
for (a, b, c) in izip!(once(left).chain(comparators), comparators, ops) { for (a, b, c) in izip!(once(left).chain(comparators), comparators, ops) {
let method = comparison_name(c) let method =
.ok_or_else(|| "unsupported comparator".to_string())? comparison_name(c).ok_or_else(|| "unsupported comparator".to_string())?.to_string();
.to_string();
self.build_method_call(method, a.custom.unwrap(), vec![b.custom.unwrap()], boolean)?; self.build_method_call(method, a.custom.unwrap(), vec![b.custom.unwrap()], boolean)?;
} }
Ok(boolean) Ok(boolean)
@ -556,26 +493,18 @@ impl<'a> Inferencer<'a> {
let ty = self.unifier.get_fresh_var().0; let ty = self.unifier.get_fresh_var().0;
match &slice.node { match &slice.node {
ast::ExprKind::Slice { lower, upper, step } => { ast::ExprKind::Slice { lower, upper, step } => {
for v in [lower.as_ref(), upper.as_ref(), step.as_ref()] for v in [lower.as_ref(), upper.as_ref(), step.as_ref()].iter().flatten() {
.iter()
.flatten()
{
self.constrain(v.custom.unwrap(), self.primitives.int32)?; self.constrain(v.custom.unwrap(), self.primitives.int32)?;
} }
let list = self.unifier.add_ty(TypeEnum::TList { ty }); let list = self.unifier.add_ty(TypeEnum::TList { ty });
self.constrain(value.custom.unwrap(), list)?; self.constrain(value.custom.unwrap(), list)?;
Ok(list) Ok(list)
} }
ast::ExprKind::Constant { ast::ExprKind::Constant { value: ast::Constant::Int(val), .. } => {
value: ast::Constant::Int(val),
..
} => {
// the index is a constant, so value can be a sequence. // the index is a constant, so value can be a sequence.
let ind: i32 = val let ind: i32 = val.try_into().map_err(|_| "Index must be int32".to_string())?;
.try_into()
.map_err(|_| "Index must be int32".to_string())?;
let map = once((ind, ty)).collect(); let map = once((ind, ty)).collect();
let seq = self.unifier.add_ty(TypeEnum::TSeq { map }); let seq = self.unifier.add_sequence(map);
self.constrain(value.custom.unwrap(), seq)?; self.constrain(value.custom.unwrap(), seq)?;
Ok(ty) Ok(ty)
} }

View File

@ -1,4 +1,5 @@
use itertools::Itertools; use itertools::{chain, zip, Itertools};
use std::borrow::Cow;
use std::cell::RefCell; use std::cell::RefCell;
use std::collections::HashMap; use std::collections::HashMap;
use std::iter::once; use std::iter::once;
@ -12,9 +13,6 @@ mod test;
/// Handle for a type, implementated as a key in the unification table. /// Handle for a type, implementated as a key in the unification table.
pub type Type = UnificationKey; pub type Type = UnificationKey;
#[derive(Clone)]
pub struct TypeCell(Rc<RefCell<TypeEnum>>);
pub type Mapping<K, V = Type> = HashMap<K, V>; pub type Mapping<K, V = Type> = HashMap<K, V>;
type VarMap = Mapping<u32>; type VarMap = Mapping<u32>;
@ -40,16 +38,20 @@ pub struct FunSignature {
pub vars: VarMap, pub vars: VarMap,
} }
// We use a lot of `Rc`/`RefCell`s here as we want to simplify our code. #[derive(Clone)]
// We may not really need so much `Rc`s, but we would have to do complicated pub enum TypeVarMeta {
// stuffs otherwise. Generic,
Sequence(RefCell<Mapping<i32>>),
Record(RefCell<Mapping<String>>),
}
#[derive(Clone)] #[derive(Clone)]
pub enum TypeEnum { pub enum TypeEnum {
TVar { TVar {
id: u32, id: u32,
}, meta: TypeVarMeta,
TSeq { // empty indicates no restriction
map: Mapping<i32>, range: RefCell<Vec<Type>>,
}, },
TTuple { TTuple {
ty: Vec<Type>, ty: Vec<Type>,
@ -57,9 +59,6 @@ pub enum TypeEnum {
TList { TList {
ty: Type, ty: Type,
}, },
TRecord {
fields: Mapping<String>,
},
TObj { TObj {
obj_id: usize, obj_id: usize,
fields: Mapping<String>, fields: Mapping<String>,
@ -68,33 +67,16 @@ pub enum TypeEnum {
TVirtual { TVirtual {
ty: Type, ty: Type,
}, },
TCall { TCall(RefCell<Vec<Rc<Call>>>),
calls: Vec<Rc<Call>>,
},
TFunc(FunSignature), TFunc(FunSignature),
} }
// Order:
// TVar
// |--> TSeq
// | |--> TTuple
// | `--> TList
// |--> TRecord
// | |--> TObj
// | `--> TVirtual
// `--> TCall
// `--> TFunc
impl TypeEnum { impl TypeEnum {
pub fn get_type_name(&self) -> &'static str { pub fn get_type_name(&self) -> &'static str {
// this function is for debugging only...
// a proper to_str implementation requires the context
match self { match self {
TypeEnum::TVar { .. } => "TVar", TypeEnum::TVar { .. } => "TVar",
TypeEnum::TSeq { .. } => "TSeq",
TypeEnum::TTuple { .. } => "TTuple", TypeEnum::TTuple { .. } => "TTuple",
TypeEnum::TList { .. } => "TList", TypeEnum::TList { .. } => "TList",
TypeEnum::TRecord { .. } => "TRecord",
TypeEnum::TObj { .. } => "TObj", TypeEnum::TObj { .. } => "TObj",
TypeEnum::TVirtual { .. } => "TVirtual", TypeEnum::TVirtual { .. } => "TVirtual",
TypeEnum::TCall { .. } => "TCall", TypeEnum::TCall { .. } => "TCall",
@ -103,176 +85,168 @@ impl TypeEnum {
} }
pub fn is_concrete(&self) -> bool { pub fn is_concrete(&self) -> bool {
matches!( !matches!(self, TypeEnum::TVar { .. })
self,
TypeEnum::TTuple { .. }
| TypeEnum::TList { .. }
| TypeEnum::TObj { .. }
| TypeEnum::TVirtual { .. }
| TypeEnum::TFunc { .. }
)
} }
} }
pub struct Unifier { pub struct Unifier {
unification_table: UnificationTable<Rc<RefCell<TypeEnum>>>, unification_table: UnificationTable<Rc<TypeEnum>>,
var_id: u32, var_id: u32,
} }
impl Unifier { impl Unifier {
/// Get an empty unifier /// Get an empty unifier
pub fn new() -> Unifier { pub fn new() -> Unifier {
Unifier { Unifier { unification_table: UnificationTable::new(), var_id: 0 }
unification_table: UnificationTable::new(),
var_id: 0,
}
} }
/// Register a type to the unifier. /// Register a type to the unifier.
/// Returns a key in the unification_table. /// Returns a key in the unification_table.
pub fn add_ty(&mut self, a: TypeEnum) -> Type { pub fn add_ty(&mut self, a: TypeEnum) -> Type {
self.unification_table.new_key(Rc::new(a.into())) self.unification_table.new_key(Rc::new(a))
}
pub fn add_record(&mut self, fields: Mapping<String>) -> Type {
let id = self.var_id + 1;
self.var_id += 1;
self.add_ty(TypeEnum::TVar {
id,
range: vec![].into(),
meta: TypeVarMeta::Record(fields.into()),
})
}
pub fn add_sequence(&mut self, sequence: Mapping<i32>) -> Type {
let id = self.var_id + 1;
self.var_id += 1;
self.add_ty(TypeEnum::TVar {
id,
range: vec![].into(),
meta: TypeVarMeta::Sequence(sequence.into()),
})
} }
/// Get the TypeEnum of a type. /// Get the TypeEnum of a type.
pub fn get_ty(&mut self, a: Type) -> Rc<RefCell<TypeEnum>> { pub fn get_ty(&mut self, a: Type) -> Rc<TypeEnum> {
self.unification_table.probe_value(a).clone() self.unification_table.probe_value(a).clone()
} }
/// Unify two types, i.e. a = b. pub fn get_fresh_var(&mut self) -> (Type, u32) {
pub fn unify(&mut self, a: Type, b: Type) -> Result<(), String> { self.get_fresh_var_with_range(&[])
self.unify_impl(a, b, false)
} }
/// Get a fresh type variable. /// Get a fresh type variable.
pub fn get_fresh_var(&mut self) -> (Type, u32) { pub fn get_fresh_var_with_range(&mut self, range: &[Type]) -> (Type, u32) {
let id = self.var_id + 1; let id = self.var_id + 1;
self.var_id += 1; self.var_id += 1;
(self.add_ty(TypeEnum::TVar { id }), id) let range = range.to_vec().into();
(self.add_ty(TypeEnum::TVar { id, range, meta: TypeVarMeta::Generic }), id)
} }
/// Get string representation of the type pub fn unify(&mut self, a: Type, b: Type) -> Result<(), String> {
pub fn stringify<F, G>(&mut self, ty: Type, obj_to_name: &mut F, var_to_name: &mut G) -> String if self.unification_table.unioned(a, b) {
where Ok(())
F: FnMut(usize) -> String, } else {
G: FnMut(u32) -> String, self.unify_impl(a, b, false)
{
let ty = self.unification_table.probe_value(ty).clone();
let ty = ty.as_ref().borrow();
match &*ty {
TypeEnum::TVar { id } => var_to_name(*id),
TypeEnum::TSeq { map } => {
let mut fields = map.iter().map(|(k, v)| {
format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name))
});
format!("seq[{}]", fields.join(", "))
}
TypeEnum::TTuple { ty } => {
let mut fields = ty
.iter()
.map(|v| self.stringify(*v, obj_to_name, var_to_name));
format!("tuple[{}]", fields.join(", "))
}
TypeEnum::TList { ty } => {
format!("list[{}]", self.stringify(*ty, obj_to_name, var_to_name))
}
TypeEnum::TVirtual { ty } => {
format!("virtual[{}]", self.stringify(*ty, obj_to_name, var_to_name))
}
TypeEnum::TRecord { fields } => {
let mut fields = fields.iter().map(|(k, v)| {
format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name))
});
format!("record[{}]", fields.join(", "))
}
TypeEnum::TObj { obj_id, params, .. } => {
let name = obj_to_name(*obj_id);
if !params.is_empty() {
let mut params = params
.values()
.map(|v| self.stringify(*v, obj_to_name, var_to_name));
format!("{}[{}]", name, params.join(", "))
} else {
name
}
}
TypeEnum::TCall { .. } => "call".to_owned(),
TypeEnum::TFunc(signature) => {
let params = signature
.args
.iter()
.map(|arg| {
format!(
"{}={}",
arg.name,
self.stringify(arg.ty, obj_to_name, var_to_name)
)
})
.join(", ");
let ret = self.stringify(signature.ret, obj_to_name, var_to_name);
format!("fn[[{}], {}]", params, ret)
}
} }
} }
fn unify_impl(&mut self, a: Type, b: Type, swapped: bool) -> Result<(), String> { fn unify_impl(&mut self, a: Type, b: Type, swapped: bool) -> Result<(), String> {
use TypeEnum::*; use TypeEnum::*;
let (ty_a_cell, ty_b_cell) = { use TypeVarMeta::*;
if self.unification_table.unioned(a, b) { let (ty_a, ty_b) = {
return Ok(());
}
( (
self.unification_table.probe_value(a).clone(), self.unification_table.probe_value(a).clone(),
self.unification_table.probe_value(b).clone(), self.unification_table.probe_value(b).clone(),
) )
}; };
let (ty_a, ty_b) = { (ty_a_cell.borrow(), ty_b_cell.borrow()) };
match (&*ty_a, &*ty_b) { match (&*ty_a, &*ty_b) {
(TypeEnum::TVar { .. }, _) => { (TVar { meta: meta1, range: range1, .. }, TVar { meta: meta2, range: range2, .. }) => {
self.occur_check(a, b)?; self.occur_check(a, b)?;
self.set_a_to_b(a, b); self.occur_check(b, a)?;
} match (meta1, meta2) {
(TSeq { map: map1 }, TSeq { .. }) => { (Generic, _) => {}
self.occur_check(a, b)?; (_, Generic) => {
drop(ty_b); return self.unify_impl(b, a, true);
if let TypeEnum::TSeq { map: map2 } = &mut *ty_b_cell.as_ref().borrow_mut() { }
// unify them to map2 (Record(fields1), Record(fields2)) => {
for (key, value) in map1.iter() { let mut fields2 = fields2.borrow_mut();
if let Some(ty) = map2.get(key) { for (key, value) in fields1.borrow().iter() {
self.unify(*ty, *value)?; if let Some(ty) = fields2.get(key) {
} else { self.unify(*ty, *value)?;
map2.insert(*key, *value); } else {
fields2.insert(key.clone(), *value);
}
} }
} }
} else { (Sequence(map1), Sequence(map2)) => {
unreachable!() let mut map2 = map2.borrow_mut();
for (key, value) in map1.borrow().iter() {
if let Some(ty) = map2.get(key) {
self.unify(*ty, *value)?;
} else {
map2.insert(*key, *value);
}
}
}
_ => {
return Err("Incompatible".to_string());
}
}
let range1 = range1.borrow();
// new range is the intersection of them
// empty range indicates no constraint
if !range1.is_empty() {
let old_range2 = range2.take();
let mut range2 = range2.borrow_mut();
if old_range2.is_empty() {
range2.extend_from_slice(&range1);
}
for v1 in old_range2.iter() {
for v2 in range1.iter() {
if !self.shape_match(*v1, *v2) {
continue;
}
self.unify(*v1, *v2)?;
range2.push(*v2);
}
}
if range2.is_empty() {
return Err(
"cannot unify type variables with incompatible value range".to_string()
);
}
} }
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TSeq { map: map1 }, TTuple { ty: types }) => { (TVar { meta: Generic, id, range, .. }, _) => {
self.occur_check(a, b)?; self.occur_check(a, b)?;
let len = types.len() as i32; self.check_var_range(*id, b, &range.borrow())?;
for (k, v) in map1.iter() { self.set_a_to_b(a, b);
}
(TVar { meta: Sequence(map), id, range, .. }, TTuple { ty }) => {
self.occur_check(a, b)?;
let len = ty.len() as i32;
for (k, v) in map.borrow().iter() {
// handle negative index // handle negative index
let ind = if *k < 0 { len + *k } else { *k }; let ind = if *k < 0 { len + *k } else { *k };
if ind >= len || ind < 0 { if ind >= len || ind < 0 {
return Err(format!( return Err(format!(
"Tuple index out of range. (Length: {}, Index: {})", "Tuple index out of range. (Length: {}, Index: {})",
types.len(), len, k
k
)); ));
} }
self.unify(*v, types[ind as usize])?; self.unify(*v, ty[ind as usize])?;
} }
self.check_var_range(*id, b, &range.borrow())?;
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TSeq { map: map1 }, TList { ty }) => { (TVar { meta: Sequence(map), id, range, .. }, TList { ty }) => {
self.occur_check(a, b)?; self.occur_check(a, b)?;
for v in map1.values() { for v in map.borrow().values() {
self.unify(*v, *ty)?; self.unify(*v, *ty)?;
} }
self.check_var_range(*id, b, &range.borrow())?;
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) => { (TTuple { ty: ty1 }, TTuple { ty: ty2 }) => {
@ -292,59 +266,32 @@ impl Unifier {
self.unify(*ty1, *ty2)?; self.unify(*ty1, *ty2)?;
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TRecord { fields: fields1 }, TRecord { .. }) => { (TVar { meta: Record(map), id, range, .. }, TObj { fields, .. }) => {
self.occur_check(a, b)?; self.occur_check(a, b)?;
drop(ty_b); for (k, v) in map.borrow().iter() {
if let TypeEnum::TRecord { fields: fields2 } = &mut *ty_b_cell.as_ref().borrow_mut() if let Some(ty) = fields.get(k) {
{ self.unify(*ty, *v)?;
for (key, value) in fields1.iter() {
if let Some(ty) = fields2.get(key) {
self.unify(*ty, *value)?;
} else {
fields2.insert(key.clone(), *value);
}
}
} else {
unreachable!()
}
self.set_a_to_b(a, b);
}
(
TRecord { fields: fields1 },
TObj {
fields: fields2, ..
},
) => {
self.occur_check(a, b)?;
for (key, value) in fields1.iter() {
if let Some(ty) = fields2.get(key) {
self.unify(*ty, *value)?;
} else { } else {
return Err(format!("No such attribute {}", key)); return Err(format!("No such attribute {}", k));
} }
} }
self.check_var_range(*id, b, &range.borrow())?;
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TRecord { .. }, TVirtual { ty }) => { (TVar { meta: Record(_), id, range, .. }, TVirtual { ty }) => {
// TODO: look at this rule
self.occur_check(a, b)?; self.occur_check(a, b)?;
self.check_var_range(*id, b, &range.borrow())?;
self.unify(a, *ty)?; self.unify(a, *ty)?;
} }
( (
TObj { TObj { obj_id: id1, params: params1, .. },
obj_id: id1, TObj { obj_id: id2, params: params2, .. },
params: params1,
..
},
TObj {
obj_id: id2,
params: params2,
..
},
) => { ) => {
if id1 != id2 { if id1 != id2 {
return Err(format!("Cannot unify objects with ID {} and {}", id1, id2)); return Err(format!("Cannot unify objects with ID {} and {}", id1, id2));
} }
for (x, y) in params1.values().zip(params2.values()) { for (x, y) in zip(params1.values(), params2.values()) {
self.unify(*x, *y)?; self.unify(*x, *y)?;
} }
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
@ -353,16 +300,10 @@ impl Unifier {
self.unify(*ty1, *ty2)?; self.unify(*ty1, *ty2)?;
self.set_a_to_b(a, b); self.set_a_to_b(a, b);
} }
(TCall { calls: c1 }, TCall { .. }) => { (TCall(calls1), TCall(calls2)) => {
drop(ty_b); calls2.borrow_mut().extend_from_slice(&calls1.borrow());
if let TypeEnum::TCall { calls: c2 } = &mut *ty_b_cell.as_ref().borrow_mut() {
c2.extend(c1.iter().cloned());
} else {
unreachable!()
}
self.set_a_to_b(a, b);
} }
(TCall { calls }, TFunc(signature)) => { (TCall(calls), TFunc(signature)) => {
self.occur_check(a, b)?; self.occur_check(a, b)?;
let required: Vec<String> = signature let required: Vec<String> = signature
.args .args
@ -371,29 +312,20 @@ impl Unifier {
.map(|v| v.name.clone()) .map(|v| v.name.clone())
.rev() .rev()
.collect(); .collect();
for c in calls { for c in calls.borrow().iter() {
let Call { let Call { posargs, kwargs, ret, fun } = c.as_ref();
posargs,
kwargs,
ret,
fun,
} = c.as_ref();
let instantiated = self.instantiate_fun(b, signature); let instantiated = self.instantiate_fun(b, signature);
let signature; let signature;
let r = self.get_ty(instantiated); let r = self.get_ty(instantiated);
let r = r.as_ref().borrow(); let r = r.as_ref();
if let TypeEnum::TFunc(s) = &*r { if let TypeEnum::TFunc(s) = &*r {
signature = s; signature = s;
} else { } else {
unreachable!(); unreachable!();
} }
let mut required = required.clone(); let mut required = required.clone();
let mut all_names: Vec<_> = signature let mut all_names: Vec<_> =
.args signature.args.iter().map(|v| (v.name.clone(), v.ty)).rev().collect();
.iter()
.map(|v| (v.name.clone(), v.ty))
.rev()
.collect();
for (i, t) in posargs.iter().enumerate() { for (i, t) in posargs.iter().enumerate() {
if signature.args.len() <= i { if signature.args.len() <= i {
return Err("Too many arguments.".to_string()); return Err("Too many arguments.".to_string());
@ -451,6 +383,88 @@ impl Unifier {
Ok(()) Ok(())
} }
/// Get string representation of the type
pub fn stringify<F, G>(&mut self, ty: Type, obj_to_name: &mut F, var_to_name: &mut G) -> String
where
F: FnMut(usize) -> String,
G: FnMut(u32) -> String,
{
use TypeVarMeta::*;
let ty = self.unification_table.probe_value(ty).clone();
match ty.as_ref() {
TypeEnum::TVar { id, meta: Generic, .. } => var_to_name(*id),
TypeEnum::TVar { meta: Sequence(map), .. } => {
let fields = map.borrow().iter().map(|(k, v)| {
format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name))
}).join(", ");
format!("seq[{}]", fields)
}
TypeEnum::TVar { meta: Record(fields), .. } => {
let fields = fields.borrow().iter().map(|(k, v)| {
format!("{}={}", k, self.stringify(*v, obj_to_name, var_to_name))
}).join(", ");
format!("record[{}]", fields)
}
TypeEnum::TTuple { ty } => {
let mut fields = ty
.iter()
.map(|v| self.stringify(*v, obj_to_name, var_to_name));
format!("tuple[{}]", fields.join(", "))
}
TypeEnum::TList { ty } => {
format!("list[{}]", self.stringify(*ty, obj_to_name, var_to_name))
}
TypeEnum::TVirtual { ty } => {
format!("virtual[{}]", self.stringify(*ty, obj_to_name, var_to_name))
}
TypeEnum::TObj { obj_id, params, .. } => {
let name = obj_to_name(*obj_id);
if !params.is_empty() {
let mut params = params
.values()
.map(|v| self.stringify(*v, obj_to_name, var_to_name));
format!("{}[{}]", name, params.join(", "))
} else {
name
}
}
TypeEnum::TCall { .. } => "call".to_owned(),
TypeEnum::TFunc(signature) => {
let params = signature
.args
.iter()
.map(|arg| {
format!(
"{}={}",
arg.name,
self.stringify(arg.ty, obj_to_name, var_to_name)
)
})
.join(", ");
let ret = self.stringify(signature.ret, obj_to_name, var_to_name);
format!("fn[[{}], {}]", params, ret)
}
}
}
fn check_var_range(&mut self, id: u32, b: Type, range: &[Type]) -> Result<(), String> {
let mut in_range = range.is_empty();
for t in range.iter() {
if self.shape_match(*t, b) {
self.unify(*t, b)?;
in_range = true;
}
}
if !in_range {
return Err(format!(
"Cannot unify {} with {} due to incompatible value range",
id,
self.get_ty(b).get_type_name()
));
}
Ok(())
}
fn set_a_to_b(&mut self, a: Type, b: Type) { fn set_a_to_b(&mut self, a: Type, b: Type) {
// unify a and b together, and set the value to b's value. // unify a and b together, and set the value to b's value.
let table = &mut self.unification_table; let table = &mut self.unification_table;
@ -460,77 +474,40 @@ impl Unifier {
} }
fn incompatible_types(&self, a: &TypeEnum, b: &TypeEnum) -> Result<(), String> { fn incompatible_types(&self, a: &TypeEnum, b: &TypeEnum) -> Result<(), String> {
Err(format!( Err(format!("Cannot unify {} with {}", a.get_type_name(), b.get_type_name()))
"Cannot unify {} with {}",
a.get_type_name(),
b.get_type_name()
))
} }
fn occur_check(&mut self, a: Type, b: Type) -> Result<(), String> { /// Instantiate a function if it hasn't been instntiated.
if self.unification_table.unioned(a, b) { /// Returns Some(T) where T is the instantiated type.
return Err("Recursive type is prohibited.".to_owned()); /// Returns None if the function is already instantiated.
fn instantiate_fun(&mut self, ty: Type, fun: &FunSignature) -> Type {
let mut instantiated = false;
let mut vars = Vec::new();
for (k, v) in fun.vars.iter() {
if let TypeEnum::TVar { id, range, .. } =
self.unification_table.probe_value(*v).as_ref()
{
if k != id {
instantiated = true;
break;
}
// actually, if the first check succeeded, the function should be uninstatiated.
// The cloned values must be used and would not be wasted.
vars.push((*k, range.clone()));
} else {
instantiated = true;
break;
}
}
if instantiated {
ty
} else {
let mapping = vars
.into_iter()
.map(|(k, range)| (k, self.get_fresh_var_with_range(range.borrow().as_ref()).0))
.collect();
self.subst(ty, &mapping).unwrap_or(ty)
} }
let ty = self.unification_table.probe_value(b).clone();
let ty = ty.borrow();
match &*ty {
TypeEnum::TVar { .. } => {
// TODO: occur check for bounds...
}
TypeEnum::TSeq { map } => {
for t in map.values() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TTuple { ty } => {
for t in ty.iter() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TList { ty } | TypeEnum::TVirtual { ty } => {
self.occur_check(a, *ty)?;
}
TypeEnum::TRecord { fields } => {
for t in fields.values() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TObj { params: map, .. } => {
for t in map.values() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TCall { calls } => {
for t in calls
.iter()
.map(|call| {
call.posargs
.iter()
.chain(call.kwargs.values())
.chain(once(&call.ret))
})
.flatten()
{
self.occur_check(a, *t)?;
}
}
TypeEnum::TFunc(FunSignature {
args,
ret,
vars: params,
}) => {
for t in args
.iter()
.map(|v| &v.ty)
.chain(params.values())
.chain(once(ret))
{
self.occur_check(a, *t)?;
}
}
};
Ok(())
} }
/// Substitute type variables within a type into other types. /// Substitute type variables within a type into other types.
@ -538,48 +515,41 @@ impl Unifier {
/// If this returns None, the result type would be the original type /// If this returns None, the result type would be the original type
/// (no substitution has to be done). /// (no substitution has to be done).
fn subst(&mut self, a: Type, mapping: &VarMap) -> Option<Type> { fn subst(&mut self, a: Type, mapping: &VarMap) -> Option<Type> {
let ty_cell = self.unification_table.probe_value(a).clone(); use TypeVarMeta::*;
let ty = ty_cell.borrow(); let ty = self.unification_table.probe_value(a).clone();
// this function would only be called when we instantiate functions. // this function would only be called when we instantiate functions.
// function type signature should ONLY contain concrete types and type // function type signature should ONLY contain concrete types and type
// variables, i.e. things like TRecord, TCall should not occur, and we // variables, i.e. things like TRecord, TCall should not occur, and we
// should be safe to not implement the substitution for those variants. // should be safe to not implement the substitution for those variants.
match &*ty { match &*ty {
TypeEnum::TVar { id } => mapping.get(&id).cloned(), TypeEnum::TVar { id, meta: Generic, .. } => mapping.get(&id).cloned(),
TypeEnum::TSeq { map } => self
.subst_map(map, mapping)
.map(|m| self.add_ty(TypeEnum::TSeq { map: m })),
TypeEnum::TTuple { ty } => { TypeEnum::TTuple { ty } => {
let mut new_ty = None; let mut new_ty = Cow::from(ty);
for (i, t) in ty.iter().enumerate() { for (i, t) in ty.iter().enumerate() {
if let Some(t1) = self.subst(*t, mapping) { if let Some(t1) = self.subst(*t, mapping) {
if new_ty.is_none() { new_ty.to_mut()[i] = t1;
new_ty = Some(ty.clone());
}
new_ty.as_mut().unwrap()[i] = t1;
} }
} }
new_ty.map(|t| self.add_ty(TypeEnum::TTuple { ty: t })) if matches!(new_ty, Cow::Owned(_)) {
Some(self.add_ty(TypeEnum::TTuple { ty: new_ty.into_owned() }))
} else {
None
}
} }
TypeEnum::TList { ty } => self TypeEnum::TList { ty } => {
.subst(*ty, mapping) self.subst(*ty, mapping).map(|t| self.add_ty(TypeEnum::TList { ty: t }))
.map(|t| self.add_ty(TypeEnum::TList { ty: t })), }
TypeEnum::TVirtual { ty } => self TypeEnum::TVirtual { ty } => {
.subst(*ty, mapping) self.subst(*ty, mapping).map(|t| self.add_ty(TypeEnum::TVirtual { ty: t }))
.map(|t| self.add_ty(TypeEnum::TVirtual { ty: t })), }
TypeEnum::TObj { TypeEnum::TObj { obj_id, fields, params } => {
obj_id,
fields,
params,
} => {
// Type variables in field types must be present in the type parameter. // Type variables in field types must be present in the type parameter.
// If the mapping does not contain any type variables in the // If the mapping does not contain any type variables in the
// parameter list, we don't need to substitute the fields. // parameter list, we don't need to substitute the fields.
// This is also used to prevent infinite substitution... // This is also used to prevent infinite substitution...
let need_subst = params.values().any(|v| { let need_subst = params.values().any(|v| {
let ty_cell = self.unification_table.probe_value(*v); let ty = self.unification_table.probe_value(*v);
let ty = ty_cell.borrow(); if let TypeEnum::TVar { id, .. } = ty.as_ref() {
if let TypeEnum::TVar { id } = &*ty {
mapping.contains_key(&id) mapping.contains_key(&id)
} else { } else {
false false
@ -587,50 +557,29 @@ impl Unifier {
}); });
if need_subst { if need_subst {
let obj_id = *obj_id; let obj_id = *obj_id;
let params = self let params = self.subst_map(&params, mapping).unwrap_or_else(|| params.clone());
.subst_map(&params, mapping) let fields = self.subst_map(&fields, mapping).unwrap_or_else(|| fields.clone());
.unwrap_or_else(|| params.clone()); Some(self.add_ty(TypeEnum::TObj { obj_id, params, fields }))
let fields = self
.subst_map(&fields, mapping)
.unwrap_or_else(|| fields.clone());
Some(self.add_ty(TypeEnum::TObj {
obj_id,
params,
fields,
}))
} else { } else {
None None
} }
} }
TypeEnum::TFunc(FunSignature { TypeEnum::TFunc(FunSignature { args, ret, vars: params }) => {
args,
ret,
vars: params,
}) => {
let new_params = self.subst_map(params, mapping); let new_params = self.subst_map(params, mapping);
let new_ret = self.subst(*ret, mapping); let new_ret = self.subst(*ret, mapping);
let mut new_args = None; let mut new_args = Cow::from(args);
for (i, t) in args.iter().enumerate() { for (i, t) in args.iter().enumerate() {
if let Some(t1) = self.subst(t.ty, mapping) { if let Some(t1) = self.subst(t.ty, mapping) {
if new_args.is_none() { let mut t = t.clone();
new_args = Some(args.clone()); t.ty = t1;
} new_args.to_mut()[i] = t;
new_args.as_mut().unwrap()[i] = FuncArg {
name: t.name.clone(),
ty: t1,
is_optional: t.is_optional,
};
} }
} }
if new_params.is_some() || new_ret.is_some() || new_args.is_some() { if new_params.is_some() || new_ret.is_some() || matches!(new_args, Cow::Owned(..)) {
let params = new_params.unwrap_or_else(|| params.clone()); let params = new_params.unwrap_or_else(|| params.clone());
let ret = new_ret.unwrap_or_else(|| *ret); let ret = new_ret.unwrap_or_else(|| *ret);
let args = new_args.unwrap_or_else(|| args.clone()); let args = new_args.into_owned();
Some(self.add_ty(TypeEnum::TFunc(FunSignature { Some(self.add_ty(TypeEnum::TFunc(FunSignature { args, ret, vars: params })))
args,
ret,
vars: params,
})))
} else { } else {
None None
} }
@ -655,95 +604,73 @@ impl Unifier {
map2 map2
} }
/// Instantiate a function if it hasn't been instntiated. fn occur_check(&mut self, a: Type, b: Type) -> Result<(), String> {
/// Returns Some(T) where T is the instantiated type. use TypeVarMeta::*;
/// Returns None if the function is already instantiated. if self.unification_table.unioned(a, b) {
fn instantiate_fun(&mut self, ty: Type, fun: &FunSignature) -> Type { return Err("Recursive type is prohibited.".to_owned());
let mut instantiated = false; }
for (k, v) in fun.vars.iter() { let ty = self.unification_table.probe_value(b).clone();
if let TypeEnum::TVar { id } =
&*self.unification_table.probe_value(*v).as_ref().borrow() match ty.as_ref() {
{ TypeEnum::TVar { meta: Generic, .. } => {}
if k != id { TypeEnum::TVar { meta: Sequence(map), .. } => {
instantiated = true; for t in map.borrow().values() {
break; self.occur_check(a, *t)?;
}
}
TypeEnum::TVar { meta: Record(map), .. } => {
for t in map.borrow().values() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TCall(calls) => {
for t in calls
.borrow()
.iter()
.map(|call| chain!(call.posargs.iter(), call.kwargs.values(), once(&call.ret)))
.flatten()
{
self.occur_check(a, *t)?;
}
}
TypeEnum::TTuple { ty } => {
for t in ty.iter() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TList { ty } | TypeEnum::TVirtual { ty } => {
self.occur_check(a, *ty)?;
}
TypeEnum::TObj { params: map, .. } => {
for t in map.values() {
self.occur_check(a, *t)?;
}
}
TypeEnum::TFunc(FunSignature { args, ret, vars: params }) => {
for t in chain!(args.iter().map(|v| &v.ty), params.values(), once(ret)) {
self.occur_check(a, *t)?;
} }
} else {
instantiated = true;
break;
} }
} }
if instantiated { Ok(())
ty
} else {
let mapping = fun
.vars
.iter()
.map(|(k, _)| (*k, self.get_fresh_var().0))
.collect();
self.subst(ty, &mapping).unwrap_or(ty)
}
} }
/// Check whether two types are equal. pub fn shape_match(&mut self, a: Type, b: Type) -> bool {
fn eq(&mut self, a: Type, b: Type) -> bool { use TypeEnum::*;
if a == b { let a = self.get_ty(a);
return true; let b = self.get_ty(b);
} match (a.as_ref(), b.as_ref()) {
let (ty_a, ty_b) = { (TVar { .. }, _) => true,
let table = &mut self.unification_table; (_, TVar { .. }) => true,
if table.unioned(a, b) { (TTuple { ty: ty1 }, TTuple { ty: ty2 }) => {
return true;
}
(table.probe_value(a).clone(), table.probe_value(b).clone())
};
let ty_a = ty_a.borrow();
let ty_b = ty_b.borrow();
match (&*ty_a, &*ty_b) {
(TypeEnum::TVar { id: id1 }, TypeEnum::TVar { id: id2 }) => id1 == id2,
(TypeEnum::TSeq { map: map1 }, TypeEnum::TSeq { map: map2 }) => self.map_eq(map1, map2),
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
ty1.len() == ty2.len() ty1.len() == ty2.len()
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2)) && zip(ty1.iter(), ty2.iter()).all(|(a, b)| self.shape_match(*a, *b))
} }
(TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 }) (TList { ty: ty1 }, TList { ty: ty2 })
| (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => { | (TVirtual { ty: ty1 }, TVirtual { ty: ty2 }) => self.shape_match(*ty1, *ty2),
self.eq(*ty1, *ty2) (TObj { obj_id: id1, .. }, TObj { obj_id: id2, .. }) => id1 == id2,
} // don't deal with function shape for now
(TypeEnum::TRecord { fields: fields1 }, TypeEnum::TRecord { fields: fields2 }) => {
self.map_eq(fields1, fields2)
}
(
TypeEnum::TObj {
obj_id: id1,
params: params1,
..
},
TypeEnum::TObj {
obj_id: id2,
params: params2,
..
},
) => id1 == id2 && self.map_eq(params1, params2),
// TCall and TFunc are not yet implemented
_ => false, _ => false,
} }
} }
fn map_eq<K>(&mut self, map1: &Mapping<K>, map2: &Mapping<K>) -> bool
where
K: std::hash::Hash + std::cmp::Eq + std::clone::Clone,
{
if map1.len() != map2.len() {
return false;
}
for (k, v) in map1.iter() {
if !map2.get(k).map(|v1| self.eq(*v, *v1)).unwrap_or(false) {
return false;
}
}
true
}
} }

View File

@ -1,8 +1,69 @@
use super::super::typedef::*; use super::*;
use itertools::Itertools; use itertools::Itertools;
use std::collections::HashMap; use std::collections::HashMap;
use test_case::test_case; use test_case::test_case;
impl Unifier {
/// Check whether two types are equal.
fn eq(&mut self, a: Type, b: Type) -> bool {
use TypeVarMeta::*;
if a == b {
return true;
}
let (ty_a, ty_b) = {
let table = &mut self.unification_table;
if table.unioned(a, b) {
return true;
}
(table.probe_value(a).clone(), table.probe_value(b).clone())
};
match (&*ty_a, &*ty_b) {
(
TypeEnum::TVar { meta: Generic, id: id1, .. },
TypeEnum::TVar { meta: Generic, id: id2, .. },
) => id1 == id2,
(
TypeEnum::TVar { meta: Sequence(map1), .. },
TypeEnum::TVar { meta: Sequence(map2), .. },
) => self.map_eq(&map1.borrow(), &map2.borrow()),
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
ty1.len() == ty2.len()
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2))
}
(TypeEnum::TList { ty: ty1 }, TypeEnum::TList { ty: ty2 })
| (TypeEnum::TVirtual { ty: ty1 }, TypeEnum::TVirtual { ty: ty2 }) => {
self.eq(*ty1, *ty2)
}
(
TypeEnum::TVar { meta: Record(fields1), .. },
TypeEnum::TVar { meta: Record(fields2), .. },
) => self.map_eq(&fields1.borrow(), &fields2.borrow()),
(
TypeEnum::TObj { obj_id: id1, params: params1, .. },
TypeEnum::TObj { obj_id: id2, params: params2, .. },
) => id1 == id2 && self.map_eq(params1, params2),
// TCall and TFunc are not yet implemented
_ => false,
}
}
fn map_eq<K>(&mut self, map1: &Mapping<K>, map2: &Mapping<K>) -> bool
where
K: std::hash::Hash + std::cmp::Eq + std::clone::Clone,
{
if map1.len() != map2.len() {
return false;
}
for (k, v) in map1.iter() {
if !map2.get(k).map(|v1| self.eq(*v, *v1)).unwrap_or(false) {
return false;
}
}
true
}
}
struct TestEnvironment { struct TestEnvironment {
pub unifier: Unifier, pub unifier: Unifier,
type_mapping: HashMap<String, Type>, type_mapping: HashMap<String, Type>,
@ -47,10 +108,7 @@ impl TestEnvironment {
}), }),
); );
TestEnvironment { TestEnvironment { unifier, type_mapping }
unifier,
type_mapping,
}
} }
fn parse(&mut self, typ: &str, mapping: &Mapping<String>) -> Type { fn parse(&mut self, typ: &str, mapping: &Mapping<String>) -> Type {
@ -65,9 +123,7 @@ impl TestEnvironment {
mapping: &Mapping<String>, mapping: &Mapping<String>,
) -> (Type, &'b str) { ) -> (Type, &'b str) {
// for testing only, so we can just panic when the input is malformed // for testing only, so we can just panic when the input is malformed
let end = typ let end = typ.find(|c| ['[', ',', ']', '='].contains(&c)).unwrap_or_else(|| typ.len());
.find(|c| ['[', ',', ']', '='].contains(&c))
.unwrap_or_else(|| typ.len());
match &typ[..end] { match &typ[..end] {
"Tuple" => { "Tuple" => {
let mut s = &typ[end..]; let mut s = &typ[end..];
@ -97,7 +153,7 @@ impl TestEnvironment {
fields.insert(key, result.0); fields.insert(key, result.0);
s = result.1; s = result.1;
} }
(self.unifier.add_ty(TypeEnum::TRecord { fields }), &s[1..]) (self.unifier.add_record(fields), &s[1..])
} }
x => { x => {
let mut s = &typ[end..]; let mut s = &typ[end..];
@ -106,7 +162,7 @@ impl TestEnvironment {
// we should not resolve the type of type variables. // we should not resolve the type of type variables.
let mut ty = *self.type_mapping.get(x).unwrap(); let mut ty = *self.type_mapping.get(x).unwrap();
let te = self.unifier.get_ty(ty); let te = self.unifier.get_ty(ty);
if let TypeEnum::TObj { params, .. } = &*te.as_ref().borrow() { if let TypeEnum::TObj { params, .. } = &*te.as_ref() {
if !params.is_empty() { if !params.is_empty() {
assert!(&s[0..1] == "["); assert!(&s[0..1] == "[");
let mut p = Vec::new(); let mut p = Vec::new();
@ -192,6 +248,7 @@ fn test_unify(
env.unifier.unify(t1, t2).unwrap(); env.unifier.unify(t1, t2).unwrap();
} }
for (a, b) in verify_pairs.iter() { for (a, b) in verify_pairs.iter() {
println!("{} = {}", a, b);
let t1 = env.parse(a, &mapping); let t1 = env.parse(a, &mapping);
let t2 = env.parse(b, &mapping); let t2 = env.parse(b, &mapping);
assert!(env.unifier.eq(t1, t2)); assert!(env.unifier.eq(t1, t2));
@ -258,10 +315,8 @@ fn test_invalid_unification(
let t2 = env.parse(b, &mapping); let t2 = env.parse(b, &mapping);
pairs.push((t1, t2)); pairs.push((t1, t2));
} }
let (t1, t2) = ( let (t1, t2) =
env.parse(errornous_pair.0 .0, &mapping), (env.parse(errornous_pair.0 .0, &mapping), env.parse(errornous_pair.0 .1, &mapping));
env.parse(errornous_pair.0 .1, &mapping),
);
for (a, b) in pairs { for (a, b) in pairs {
env.unifier.unify(a, b).unwrap(); env.unifier.unify(a, b).unwrap();
} }