forked from M-Labs/nac3
split top level handling in several functions
This commit is contained in:
parent
d3ad894521
commit
d8c3c063ec
|
@ -60,8 +60,6 @@ pub struct TopLevelContext {
|
||||||
pub struct TopLevelComposer {
|
pub struct TopLevelComposer {
|
||||||
// list of top level definitions, same as top level context
|
// list of top level definitions, same as top level context
|
||||||
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
||||||
// list of top level Type, the index is same as the field `definition_list`
|
|
||||||
pub ty_list: RwLock<Vec<Type>>,
|
|
||||||
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
||||||
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
||||||
// start as a primitive unifier, will add more top_level defs inside
|
// start as a primitive unifier, will add more top_level defs inside
|
||||||
|
@ -70,6 +68,8 @@ pub struct TopLevelComposer {
|
||||||
pub primitives: PrimitiveStore,
|
pub primitives: PrimitiveStore,
|
||||||
// mangled class method name to def_id
|
// mangled class method name to def_id
|
||||||
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
||||||
|
// record the def id of the classes whoses fields and methods are to be analyzed
|
||||||
|
pub to_be_analyzed_class: RwLock<Vec<DefinitionId>>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl TopLevelComposer {
|
impl TopLevelComposer {
|
||||||
|
@ -133,21 +133,13 @@ impl TopLevelComposer {
|
||||||
|
|
||||||
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
||||||
|
|
||||||
let ty_list: Vec<Type> = vec![
|
|
||||||
primitives.0.int32,
|
|
||||||
primitives.0.int64,
|
|
||||||
primitives.0.float,
|
|
||||||
primitives.0.bool,
|
|
||||||
primitives.0.none,
|
|
||||||
];
|
|
||||||
|
|
||||||
let composer = TopLevelComposer {
|
let composer = TopLevelComposer {
|
||||||
definition_list: RwLock::new(top_level_def_list).into(),
|
definition_list: RwLock::new(top_level_def_list).into(),
|
||||||
ty_list: RwLock::new(ty_list),
|
|
||||||
ast_list: RwLock::new(ast_list),
|
ast_list: RwLock::new(ast_list),
|
||||||
primitives: primitives.0,
|
primitives: primitives.0,
|
||||||
unifier: primitives.1.into(),
|
unifier: primitives.1.into(),
|
||||||
class_method_to_def_id: Default::default(),
|
class_method_to_def_id: Default::default(),
|
||||||
|
to_be_analyzed_class: Default::default(),
|
||||||
};
|
};
|
||||||
(
|
(
|
||||||
vec![
|
vec![
|
||||||
|
@ -190,17 +182,20 @@ impl TopLevelComposer {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// step 0, register, just remeber the names of top level classes/function
|
||||||
pub fn register_top_level(
|
pub fn register_top_level(
|
||||||
&mut self,
|
&mut self,
|
||||||
ast: ast::Stmt<()>,
|
ast: ast::Stmt<()>,
|
||||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
||||||
) -> Result<(String, DefinitionId, Type), String> {
|
) -> Result<(String, DefinitionId), String> {
|
||||||
// get write access to the lists
|
let (
|
||||||
let (mut def_list, mut ty_list, mut ast_list) =
|
mut def_list,
|
||||||
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
|
mut ast_list
|
||||||
|
) = (
|
||||||
// will be deleted after tested
|
self.definition_list.write(),
|
||||||
assert_eq!(ty_list.len(), def_list.len());
|
self.ast_list.write()
|
||||||
|
);
|
||||||
|
|
||||||
assert_eq!(def_list.len(), ast_list.len());
|
assert_eq!(def_list.len(), ast_list.len());
|
||||||
|
|
||||||
match &ast.node {
|
match &ast.node {
|
||||||
|
@ -208,25 +203,17 @@ impl TopLevelComposer {
|
||||||
let class_name = name.to_string();
|
let class_name = name.to_string();
|
||||||
let class_def_id = def_list.len();
|
let class_def_id = def_list.len();
|
||||||
|
|
||||||
// add the class to the unifier
|
|
||||||
let ty = self.unifier.write().add_ty(TypeEnum::TObj {
|
|
||||||
obj_id: DefinitionId(class_def_id),
|
|
||||||
fields: Default::default(),
|
|
||||||
params: Default::default(),
|
|
||||||
});
|
|
||||||
|
|
||||||
// add the class to the definition lists
|
// add the class to the definition lists
|
||||||
def_list
|
def_list
|
||||||
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
||||||
ty_list.push(ty);
|
|
||||||
// since later when registering class method, ast will still be used,
|
// since later when registering class method, ast will still be used,
|
||||||
// here push None temporarly, later will push the ast
|
// here push None temporarly, later will move the ast inside
|
||||||
ast_list.push(None);
|
ast_list.push(None);
|
||||||
|
|
||||||
// parse class def body and register class methods into the def list.
|
// parse class def body and register class methods into the def list.
|
||||||
// module's symbol resolver would not know the name of the class methods,
|
// module's symbol resolver would not know the name of the class methods,
|
||||||
// thus cannot return their definition_id? so we have to manage it ourselves
|
// thus cannot return their definition_id? so we have to manage it ourselves
|
||||||
// by using the field `class_method_to_def_id`
|
// by using `class_method_to_def_id`
|
||||||
for b in body {
|
for b in body {
|
||||||
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
||||||
let fun_name = Self::name_mangling(class_name.clone(), name);
|
let fun_name = Self::name_mangling(class_name.clone(), name);
|
||||||
|
@ -248,356 +235,297 @@ impl TopLevelComposer {
|
||||||
)
|
)
|
||||||
.into(),
|
.into(),
|
||||||
);
|
);
|
||||||
ty_list.push(ty);
|
|
||||||
// the ast of class method is in the class, push None in to the list here
|
// the ast of class method is in the class, push None in to the list here
|
||||||
ast_list.push(None);
|
ast_list.push(None);
|
||||||
|
|
||||||
// class method, do not let the symbol manager manage it, use our own map
|
// class method, do not let the symbol manager manage it, use our own map
|
||||||
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
||||||
|
|
||||||
// if it is the contructor, special handling is needed. In the above
|
|
||||||
// handling, we still add __init__ function to the class method
|
|
||||||
if name == "__init__" {
|
|
||||||
// NOTE: how can this later be fetched?
|
|
||||||
def_list.push(
|
|
||||||
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
|
||||||
.into(),
|
|
||||||
);
|
|
||||||
// arbitarily push one to make sure the index is correct
|
|
||||||
ty_list.push(self.primitives.none);
|
|
||||||
ast_list.push(None);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// move the ast to the entry of the class in the ast_list
|
// move the ast to the entry of the class in the ast_list
|
||||||
ast_list[class_def_id] = Some(ast);
|
ast_list[class_def_id] = Some(ast);
|
||||||
|
|
||||||
// return
|
// put the constructor into the def_list
|
||||||
Ok((class_name, DefinitionId(class_def_id), ty))
|
def_list.push(
|
||||||
|
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
||||||
|
.into(),
|
||||||
|
);
|
||||||
|
ast_list.push(None);
|
||||||
|
|
||||||
|
// class, put its def_id into the to be analyzed set
|
||||||
|
let mut to_be_analyzed = self.to_be_analyzed_class.write();
|
||||||
|
to_be_analyzed.push(DefinitionId(class_def_id));
|
||||||
|
|
||||||
|
|
||||||
|
Ok((class_name, DefinitionId(class_def_id)))
|
||||||
}
|
}
|
||||||
|
|
||||||
ast::StmtKind::FunctionDef { name, .. } => {
|
ast::StmtKind::FunctionDef { name, .. } => {
|
||||||
let fun_name = name.to_string();
|
let fun_name = name.to_string();
|
||||||
|
|
||||||
// add to the unifier
|
|
||||||
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
|
|
||||||
args: Default::default(),
|
|
||||||
ret: self.primitives.none,
|
|
||||||
vars: Default::default(),
|
|
||||||
}));
|
|
||||||
|
|
||||||
// add to the definition list
|
// add to the definition list
|
||||||
def_list.push(
|
def_list.push(
|
||||||
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
||||||
.into(),
|
.into(),
|
||||||
);
|
);
|
||||||
ty_list.push(ty);
|
|
||||||
ast_list.push(Some(ast));
|
ast_list.push(Some(ast));
|
||||||
|
|
||||||
// return
|
// return
|
||||||
Ok((fun_name, DefinitionId(def_list.len() - 1), ty))
|
Ok((fun_name, DefinitionId(def_list.len() - 1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
/// step 1, analyze the type vars associated with top level class
|
||||||
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
||||||
let mut def_list = self.definition_list.write();
|
let mut def_list = self.definition_list.write();
|
||||||
let ty_list = self.ty_list.read();
|
|
||||||
let ast_list = self.ast_list.read();
|
let ast_list = self.ast_list.read();
|
||||||
let mut unifier = self.unifier.write();
|
let mut unifier = self.unifier.write();
|
||||||
|
|
||||||
for (def, ty, ast) in def_list
|
for (class_def, class_ast) in def_list
|
||||||
.iter_mut()
|
.iter_mut()
|
||||||
.zip(ty_list.iter())
|
|
||||||
.zip(ast_list.iter())
|
.zip(ast_list.iter())
|
||||||
.map(|((x, y), z)| (x, y, z))
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
||||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
// only deal with class def here
|
||||||
{
|
let (
|
||||||
unimplemented!()
|
class_bases,
|
||||||
}
|
class_def_type_vars,
|
||||||
unimplemented!()
|
class_resolver
|
||||||
}
|
) = {
|
||||||
|
if let TopLevelDef::Class {
|
||||||
/// this should be called after all top level classes are registered, and
|
type_vars,
|
||||||
/// will actually fill in those fields of the previous dummy one
|
resolver,
|
||||||
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
|
||||||
let mut def_list = self.definition_list.write();
|
|
||||||
let ty_list = self.ty_list.read();
|
|
||||||
let ast_list = self.ast_list.read();
|
|
||||||
let mut unifier = self.unifier.write();
|
|
||||||
|
|
||||||
for (def, ty, ast) in def_list
|
|
||||||
.iter_mut()
|
|
||||||
.zip(ty_list.iter())
|
|
||||||
.zip(ast_list.iter())
|
|
||||||
.map(|((x, y), z)| (x, y, z))
|
|
||||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
|
||||||
{
|
|
||||||
// only analyze those entries with ast, and class_method(whose ast in class def)
|
|
||||||
match ast {
|
|
||||||
Some(ast::Located{node: ast::StmtKind::ClassDef {
|
|
||||||
bases,
|
|
||||||
body,
|
|
||||||
name: class_name,
|
|
||||||
..
|
..
|
||||||
}, .. }) => {
|
} = class_def.get_mut() {
|
||||||
// get the mutable reference of the entry in the
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||||
// definition list, get the `TopLevelDef`
|
bases,
|
||||||
let (
|
|
||||||
def_ancestors,
|
|
||||||
def_fields,
|
|
||||||
def_methods,
|
|
||||||
def_type_vars,
|
|
||||||
resolver,
|
|
||||||
) = if let TopLevelDef::Class {
|
|
||||||
object_id: _,
|
|
||||||
ancestors,
|
|
||||||
fields,
|
|
||||||
methods,
|
|
||||||
type_vars,
|
|
||||||
resolver: Some(resolver)
|
|
||||||
} = def.get_mut() {
|
|
||||||
(ancestors, fields, methods, type_vars, resolver.lock())
|
|
||||||
} else { unreachable!() };
|
|
||||||
|
|
||||||
// try to get mutable reference of the entry in the
|
|
||||||
// unification table, get the `TypeEnum`
|
|
||||||
let type_enum = unifier.get_ty(*ty);
|
|
||||||
let (
|
|
||||||
enum_params,
|
|
||||||
enum_fields
|
|
||||||
) = if let TypeEnum::TObj {
|
|
||||||
params,
|
|
||||||
fields,
|
|
||||||
..
|
..
|
||||||
} = type_enum.borrow() {
|
}, .. }) = class_ast {
|
||||||
(params, fields)
|
(bases, type_vars, resolver)
|
||||||
} else { unreachable!() };
|
} else { unreachable!("must be both class") }
|
||||||
|
} else { continue }
|
||||||
// ancestors and typevars associate with the class are analyzed by looking
|
};
|
||||||
// into the `bases` ast node
|
|
||||||
// `Generic` should only occur once, use this flag
|
let mut generic_occured = false;
|
||||||
let mut generic_occured = false;
|
for b in class_bases {
|
||||||
// TODO: haven't check this yet
|
match &b.node {
|
||||||
let mut occured_type_var: HashSet<Type> = Default::default();
|
// analyze typevars bounded to the class,
|
||||||
// TODO: haven't check this yet
|
// only support things like `class A(Generic[T, V])`,
|
||||||
let mut occured_base: HashSet<DefinitionId> = Default::default();
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
||||||
for b in bases {
|
// i.e. only simple names are allowed in the subscript
|
||||||
match &b.node {
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
||||||
// analyze typevars bounded to the class,
|
ast::ExprKind::Subscript {value, slice, ..} if {
|
||||||
// only support things like `class A(Generic[T, V])`,
|
// can only be `Generic[...]` and this can only appear once
|
||||||
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
if let ast::ExprKind::Name { id, .. } = &value.node {
|
||||||
// i.e. only simple names are allowed in the subscript
|
if id == "Generic" {
|
||||||
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
if !generic_occured {
|
||||||
ast::ExprKind::Subscript {value, slice, ..} if {
|
generic_occured = true;
|
||||||
// can only be `Generic[...]` and this can only appear once
|
true
|
||||||
if let ast::ExprKind::Name { id, .. } = &value.node {
|
} else {
|
||||||
if id == "Generic" {
|
return Err("Only single Generic[...] can be in bases".into())
|
||||||
if !generic_occured {
|
}
|
||||||
generic_occured = true;
|
} else { false }
|
||||||
true
|
} else { false }
|
||||||
} else {
|
} => {
|
||||||
return Err("Only single Generic[...] or Protocol[...] can be in bases".into())
|
// if `class A(Generic[T, V, G])`
|
||||||
}
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||||
} else { false }
|
// parse the type vars
|
||||||
} else { false }
|
let type_vars = elts
|
||||||
} => {
|
|
||||||
match &slice.node {
|
|
||||||
// `class Foo(Generic[T, V, P]):` multiple element inside the subscript
|
|
||||||
ast::ExprKind::Tuple {elts, ..} => {
|
|
||||||
let tys = elts
|
|
||||||
.iter()
|
|
||||||
// here parse_type_annotation should be fine,
|
|
||||||
// since we only expect type vars, which is not relevant
|
|
||||||
// to the top-level parsing
|
|
||||||
.map(|x| resolver.parse_type_annotation(
|
|
||||||
&self.to_top_level_context(),
|
|
||||||
unifier.borrow_mut(),
|
|
||||||
&self.primitives,
|
|
||||||
x))
|
|
||||||
.collect::<Result<Vec<_>, _>>()?;
|
|
||||||
|
|
||||||
let ty_var_ids = tys
|
|
||||||
.iter()
|
|
||||||
.map(|t| {
|
|
||||||
let tmp = unifier.get_ty(*t);
|
|
||||||
// make sure it is type var
|
|
||||||
if let TypeEnum::TVar {id, ..} = tmp.as_ref() {
|
|
||||||
Ok(*id)
|
|
||||||
} else {
|
|
||||||
Err("Expect type variabls here".to_string())
|
|
||||||
}
|
|
||||||
})
|
|
||||||
.collect::<Result<Vec<_>, _>>()?;
|
|
||||||
|
|
||||||
// write to TypeEnum
|
|
||||||
for (id, ty) in ty_var_ids.iter().zip(tys.iter()) {
|
|
||||||
enum_params.borrow_mut().insert(*id, *ty);
|
|
||||||
}
|
|
||||||
|
|
||||||
// write to TopLevelDef
|
|
||||||
for ty in tys{
|
|
||||||
def_type_vars.push(ty)
|
|
||||||
}
|
|
||||||
},
|
|
||||||
|
|
||||||
// `class Foo(Generic[T]):`, only single element
|
|
||||||
_ => {
|
|
||||||
let ty = resolver.parse_type_annotation(
|
|
||||||
&self.to_top_level_context(),
|
|
||||||
unifier.borrow_mut(),
|
|
||||||
&self.primitives,
|
|
||||||
&slice
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let ty_var_id = if let TypeEnum::TVar { id, .. } = unifier
|
|
||||||
.get_ty(ty)
|
|
||||||
.as_ref() { *id } else {
|
|
||||||
return Err("Expect type variabls here".to_string())
|
|
||||||
};
|
|
||||||
|
|
||||||
// write to TypeEnum
|
|
||||||
enum_params.borrow_mut().insert(ty_var_id, ty);
|
|
||||||
|
|
||||||
// write to TopLevelDef
|
|
||||||
def_type_vars.push(ty);
|
|
||||||
},
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
// analyze base classes, which is possible in
|
|
||||||
// other cases, we parse for the base class
|
|
||||||
// FIXME: calling parse_type_annotation here might cause some problem
|
|
||||||
// when the base class is parametrized `BaseClass[int, bool]`, since the
|
|
||||||
// analysis of type var of some class is not done yet.
|
|
||||||
// we can first only look at the name, and later check the
|
|
||||||
// parameter when others are done
|
|
||||||
// Or
|
|
||||||
// first get all the class' type var analyzed, and then
|
|
||||||
// analyze the base class
|
|
||||||
_ => {
|
|
||||||
let ty = resolver.parse_type_annotation(
|
|
||||||
&self.to_top_level_context(),
|
|
||||||
unifier.borrow_mut(),
|
|
||||||
&self.primitives,
|
|
||||||
b
|
|
||||||
)?;
|
|
||||||
|
|
||||||
let obj_def_id = if let TypeEnum::TObj { obj_id, .. } = unifier
|
|
||||||
.get_ty(ty)
|
|
||||||
.as_ref() {
|
|
||||||
*obj_id
|
|
||||||
} else {
|
|
||||||
return Err("Expect concrete classes/types here".into())
|
|
||||||
};
|
|
||||||
|
|
||||||
// write to TopLevelDef
|
|
||||||
def_ancestors.push(obj_def_id);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// class method and field are analyzed by
|
|
||||||
// looking into the class body ast node
|
|
||||||
// NOTE: should consider parents' method and fields(check re-def and add),
|
|
||||||
// but we do it later we go over these again after we finish analyze the
|
|
||||||
// fields/methods as declared in the ast
|
|
||||||
// method with same name should not occur twice, so use this
|
|
||||||
let defined_method: HashSet<String> = Default::default();
|
|
||||||
for stmt in body {
|
|
||||||
if let ast::StmtKind::FunctionDef {
|
|
||||||
name: func_name,
|
|
||||||
args,
|
|
||||||
body,
|
|
||||||
returns,
|
|
||||||
..
|
|
||||||
} = &stmt.node {
|
|
||||||
// build type enum, need FunSignature {args, vars, ret}
|
|
||||||
// args. Now only args with no default TODO: other kinds of args
|
|
||||||
let func_args = args.args
|
|
||||||
.iter()
|
.iter()
|
||||||
.map(|x| -> Result<FuncArg, String> {
|
.map(|e|
|
||||||
Ok(FuncArg {
|
class_resolver
|
||||||
name: x.node.arg.clone(),
|
.as_ref()
|
||||||
ty: resolver.parse_type_annotation(
|
.unwrap()
|
||||||
|
.lock()
|
||||||
|
.parse_type_annotation(
|
||||||
&self.to_top_level_context(),
|
&self.to_top_level_context(),
|
||||||
unifier.borrow_mut(),
|
unifier.borrow_mut(),
|
||||||
&self.primitives,
|
&self.primitives,
|
||||||
x
|
e)
|
||||||
.node
|
)
|
||||||
.annotation
|
.collect::<Result<Vec<_>, _>>()?;
|
||||||
.as_ref()
|
|
||||||
.ok_or_else(|| "type annotations required for function parameters".to_string())?
|
// check if all are unique type vars
|
||||||
)?,
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
||||||
default_value: None
|
let all_unique_type_var = type_vars
|
||||||
})
|
|
||||||
})
|
|
||||||
.collect::<Result<Vec<FuncArg>, _>>()?;
|
|
||||||
// vars. find TypeVars used in the argument type annotation
|
|
||||||
let func_vars = func_args
|
|
||||||
.iter()
|
.iter()
|
||||||
.filter_map(|FuncArg { ty, .. } | {
|
.all(|x| {
|
||||||
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
let ty = unifier.get_ty(*x);
|
||||||
Some((*id, *ty))
|
if let TypeEnum::TVar {id, ..} = ty.as_ref() {
|
||||||
} else { None }
|
occured_type_var_id.insert(*id)
|
||||||
})
|
} else { false }
|
||||||
.collect::<HashMap<u32, Type>>();
|
});
|
||||||
// return type
|
|
||||||
let func_ret = resolver
|
if !all_unique_type_var { return Err("expect unique type variables".into()) }
|
||||||
.parse_type_annotation(
|
|
||||||
|
// add to TopLevelDef
|
||||||
|
class_def_type_vars.extend(type_vars);
|
||||||
|
|
||||||
|
// `class A(Generic[T])`
|
||||||
|
} else {
|
||||||
|
let ty =
|
||||||
|
class_resolver
|
||||||
|
.as_ref()
|
||||||
|
.unwrap()
|
||||||
|
.lock()
|
||||||
|
.parse_type_annotation(
|
||||||
&self.to_top_level_context(),
|
&self.to_top_level_context(),
|
||||||
unifier.borrow_mut(),
|
unifier.borrow_mut(),
|
||||||
&self.primitives,
|
&self.primitives,
|
||||||
returns
|
&slice
|
||||||
.as_ref()
|
|
||||||
.ok_or_else(|| "return type annotations required here".to_string())?
|
|
||||||
.as_ref(),
|
|
||||||
)?;
|
)?;
|
||||||
// build the TypeEnum
|
// check if it is type var
|
||||||
let func_type_sig = FunSignature {
|
let is_type_var = matches!(
|
||||||
args: func_args,
|
unifier.get_ty(ty).as_ref(),
|
||||||
vars: func_vars,
|
&TypeEnum::TVar { .. }
|
||||||
ret: func_ret
|
);
|
||||||
};
|
if !is_type_var { return Err("expect type variable here".into()) }
|
||||||
|
|
||||||
// write to the TypeEnum and Def_list (by replacing the ty with the new Type created above)
|
// add to TopLevelDef
|
||||||
let func_name_mangled = Self::name_mangling(class_name.clone(), func_name);
|
class_def_type_vars.push(ty);
|
||||||
let def_id = self.class_method_to_def_id.read()[&func_name_mangled];
|
|
||||||
unimplemented!();
|
|
||||||
|
|
||||||
|
|
||||||
if func_name == "__init__" {
|
|
||||||
// special for constructor, need to look into the fields
|
|
||||||
// TODO: look into the function body and see
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// do nothing. we do not care about things like this?
|
|
||||||
// class A:
|
|
||||||
// a = 3
|
|
||||||
// b = [2, 3]
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
|
||||||
|
// if others, do nothing in this function
|
||||||
|
_ => continue
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
// top level function definition
|
/// step 2, base classes. Need to separate step1 and step2 for this reason:
|
||||||
Some(ast::Located{node: ast::StmtKind::FunctionDef {
|
/// `class B(Generic[T, V]);
|
||||||
name,
|
/// class A(B[int, bool])`
|
||||||
args,
|
/// if the type var associated with class `B` has not been handled properly,
|
||||||
body,
|
/// the parse of type annotation of `B[int, bool]` will fail
|
||||||
returns,
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
||||||
|
let mut def_list = self.definition_list.write();
|
||||||
|
let ast_list = self.ast_list.read();
|
||||||
|
let mut unifier = self.unifier.write();
|
||||||
|
|
||||||
|
for (class_def, class_ast) in def_list
|
||||||
|
.iter_mut()
|
||||||
|
.zip(ast_list.iter())
|
||||||
|
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
||||||
|
let (
|
||||||
|
class_bases,
|
||||||
|
class_ancestors,
|
||||||
|
class_resolver
|
||||||
|
) = {
|
||||||
|
if let TopLevelDef::Class {
|
||||||
|
ancestors,
|
||||||
|
resolver,
|
||||||
..
|
..
|
||||||
}, .. }) => {
|
} = class_def.get_mut() {
|
||||||
// TODO:
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||||
unimplemented!()
|
bases,
|
||||||
|
..
|
||||||
|
}, .. }) = class_ast {
|
||||||
|
(bases, ancestors, resolver)
|
||||||
|
} else { unreachable!("must be both class") }
|
||||||
|
} else { continue }
|
||||||
|
};
|
||||||
|
for b in class_bases {
|
||||||
|
// type vars have already been handled, so skip on `Generic[...]`
|
||||||
|
if let ast::ExprKind::Subscript {value, ..} = &b.node {
|
||||||
|
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||||
|
if id == "Generic" { continue }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// get the def id of the base class
|
||||||
|
let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation(
|
||||||
|
&self.to_top_level_context(),
|
||||||
|
unifier.borrow_mut(),
|
||||||
|
&self.primitives,
|
||||||
|
b
|
||||||
|
)?;
|
||||||
|
let base_id =
|
||||||
|
if let TypeEnum::TObj {obj_id, ..} = unifier.get_ty(base_ty).as_ref() {
|
||||||
|
*obj_id
|
||||||
|
} else { return Err("expect concrete class/type to be base class".into()) };
|
||||||
|
|
||||||
|
// write to the class ancestors
|
||||||
|
class_ancestors.push(base_id);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// step 3, class_fields
|
||||||
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
||||||
|
let mut def_list = self.definition_list.write();
|
||||||
|
let ast_list = self.ast_list.read();
|
||||||
|
let mut unifier = self.unifier.write();
|
||||||
|
let class_method_to_def_id = self.class_method_to_def_id.read();
|
||||||
|
let mut to_be_analyzed_class = self.to_be_analyzed_class.write();
|
||||||
|
|
||||||
|
while !to_be_analyzed_class.is_empty() {
|
||||||
|
let ind = to_be_analyzed_class.remove(0).0;
|
||||||
|
|
||||||
|
let (class_def, class_ast) = (
|
||||||
|
&mut def_list[ind], &ast_list[ind]
|
||||||
|
);
|
||||||
|
let (
|
||||||
|
class_name,
|
||||||
|
class_fields,
|
||||||
|
class_methods,
|
||||||
|
class_resolver,
|
||||||
|
class_body
|
||||||
|
) = {
|
||||||
|
if let TopLevelDef::Class {
|
||||||
|
resolver,
|
||||||
|
fields,
|
||||||
|
methods,
|
||||||
|
..
|
||||||
|
} = class_def.get_mut() {
|
||||||
|
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||||
|
name,
|
||||||
|
body,
|
||||||
|
..
|
||||||
|
}, .. }) = class_ast {
|
||||||
|
(name, fields, methods, resolver, body)
|
||||||
|
} else { unreachable!("must be both class") }
|
||||||
|
} else { continue }
|
||||||
|
};
|
||||||
|
for b in class_body {
|
||||||
|
if let ast::StmtKind::FunctionDef {
|
||||||
|
args: func_args,
|
||||||
|
body: func_body,
|
||||||
|
name: func_name,
|
||||||
|
returns: func_returns,
|
||||||
|
..
|
||||||
|
} = &b.node {
|
||||||
|
// unwrap should not fail
|
||||||
|
let method_def_id =
|
||||||
|
class_method_to_def_id
|
||||||
|
.get(&Self::name_mangling(
|
||||||
|
class_name.into(),
|
||||||
|
func_name)
|
||||||
|
).unwrap();
|
||||||
|
|
||||||
|
let a = &def_list[method_def_id.0];
|
||||||
|
} else {
|
||||||
|
// what should we do with `class A: a = 3`?
|
||||||
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// only expect class def and function def ast
|
|
||||||
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
fn analyze_top_level_inheritance(&mut self) -> Result<(), String> {
|
||||||
|
unimplemented!()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
|
||||||
|
unimplemented!()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue