continue working on the top level

escape-analysis
ychenfo 2021-08-10 23:49:58 +08:00
parent a73ab922e2
commit 1bec6cf2db
2 changed files with 224 additions and 59 deletions

View File

@ -1,3 +1,4 @@
use std::borrow::Borrow;
use std::{collections::HashMap, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore;
@ -78,13 +79,19 @@ pub struct CodeGenContext<'ctx> {
pub loop_bb: Option<(BasicBlock<'ctx>, BasicBlock<'ctx>)>,
}
pub struct TopLevelDefInfo<'a> {
pub fn name_mangling(mut class_name: String, method_name: &str) -> String { // need to further extend to more name mangling like instantiations of typevar
class_name.push_str(method_name);
class_name
}
pub struct TopLevelDefInfo<'a> {
// like adding some info on top of the TopLevelDef for later parsing the class bases, method,
// and function sigatures
def: TopLevelDef, // the definition entry
ty: Type, // the entry in the top_level unifier
ast: Option<ast::Stmt<()>>, // the ast submitted by applications
resolver: Option<&'a dyn SymbolResolver>, // the resolver
def: TopLevelDef, // the definition entry
ty: Type, // the entry in the top_level unifier
ast: Option<ast::Stmt<()>>, // the ast submitted by applications, primitives and class methods will have None value here
resolver: Option<&'a dyn SymbolResolver> // the resolver
}
pub struct TopLevelComposer<'a> {
@ -163,13 +170,14 @@ impl<'a> TopLevelComposer<'a> {
TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 }
}
/// already include the definition_id of itself inside the ancestors vector
pub fn make_top_level_class_def(index: usize) -> TopLevelDef {
TopLevelDef::Class {
object_id: DefinitionId(index),
type_vars: Default::default(),
fields: Default::default(),
methods: Default::default(),
ancestors: Default::default(),
ancestors: vec![DefinitionId(index)],
}
}
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
@ -186,10 +194,10 @@ impl<'a> TopLevelComposer<'a> {
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
vec![
("int32".into(), DefinitionId(0), self.primitives.int32),
("int64".into(), DefinitionId(0), self.primitives.int32),
("float".into(), DefinitionId(0), self.primitives.int32),
("bool".into(), DefinitionId(0), self.primitives.int32),
("none".into(), DefinitionId(0), self.primitives.int32),
("int64".into(), DefinitionId(1), self.primitives.int64),
("float".into(), DefinitionId(2), self.primitives.float),
("bool".into(), DefinitionId(3), self.primitives.bool),
("none".into(), DefinitionId(4), self.primitives.none),
]
}
@ -201,29 +209,67 @@ impl<'a> TopLevelComposer<'a> {
match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string();
let def_id = self.definition_list.len();
let class_def_id = self.definition_list.len();
// add the class to the unifier
let ty = self.unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(def_id),
obj_id: DefinitionId(class_def_id),
fields: Default::default(),
params: Default::default(),
});
let mut ret_vector: Vec<(String, DefinitionId, Type)> = vec![(class_name.clone(), DefinitionId(class_def_id), ty)];
// parse class def body and register class methods into the def list
// NOTE: module's symbol resolver would not know the name of the class methods, thus cannot return their definition_id? so we have to manage it ourselves?
// or do we return the class method list of (method_name, def_id, type) to application to be used to build symbol resolver? <- current implementation
for b in body {
if let ast::StmtKind::FunctionDef {name, ..} = &b.node {
let fun_name = name_mangling(class_name.clone(), name);
let def_id = self.definition_list.len();
// add to unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
args: Default::default(),
ret: self.primitives.none,
vars: Default::default()
}));
// add to the definition list
self.definition_list.push(
TopLevelDefInfo {
def: Self::make_top_level_function_def(fun_name.clone(), ty),
resolver: Some(resolver),
ty,
ast: None // since it is inside the class def body statments
}
);
ret_vector.push((fun_name, DefinitionId(def_id), ty));
if name == "__init__" { // if it is the contructor, special handling is needed. In the above handling, we still add __init__ function to the class method
self.definition_list.push(
TopLevelDefInfo {
def: TopLevelDef::Initializer {
class_id: DefinitionId(class_def_id) // FIXME: None if have no parameter, Some if same as __init__?
},
ty: self.primitives.none, // arbitary picked one
ast: None, // it is inside the class def body statments
resolver: Some(resolver)
}
)
// FIXME: should we return this to the symbol resolver?
}
} else { } // else do nothing
}
// add to the definition list
self.definition_list.push(TopLevelDefInfo {
def: Self::make_top_level_class_def(def_id),
resolver: Some(resolver),
ast: Some(ast),
ty,
});
// TODO: parse class def body and register class methods into the def list?
// FIXME: module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves? or
// do we return the class method list of (method_name, def_id, type) to application
// to be used to build symbol resolver? <- current implementation
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
}
self.definition_list.push(
TopLevelDefInfo {
def: Self::make_top_level_class_def(class_def_id),
resolver: Some(resolver),
ast: Some(ast),
ty,
}
);
Ok(ret_vector)
},
ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string();
@ -232,18 +278,18 @@ impl<'a> TopLevelComposer<'a> {
let ty =
self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
args: Default::default(),
ret: self.primitives.none, // NOTE: this needs to be changed later
vars: Default::default(),
}));
ret: self.primitives.none,
vars: Default::default()
}));
// add to the definition list
self.definition_list.push(TopLevelDefInfo {
def: Self::make_top_level_function_def(
name.into(),
self.primitives.none, // NOTE: this needs to be changed later
),
resolver: Some(resolver),
ast: Some(ast),
ty,
def: Self::make_top_level_function_def(
name.into(),
self.primitives.none
),
resolver: Some(resolver),
ast: Some(ast),
ty,
});
Ok(vec![(fun_name, DefinitionId(def_id), ty)])
@ -259,50 +305,137 @@ impl<'a> TopLevelComposer<'a> {
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) {
match &ast.node {
ast::StmtKind::ClassDef {
name,
bases,
body,
..
} => {
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
let (_,
ancestors,
fields,
methods,
type_vars
) = if let TopLevelDef::Class {
object_id,
ancestors,
fields,
methods,
type_vars
} = &mut d.def {
(object_id, ancestors, fields, methods, type_vars)
} else { unreachable!() };
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
let (params,
fields
) = if let TypeEnum::TObj {
params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id?
fields,
..
} = self.unifier.get_ty(d.ty).borrow() {
(params, fields)
} else { unreachable!() };
// ancestors and typevars associate with the class are analyzed by looking
// into the `bases` ast node
for b in bases {
match &b.node {
// base class, name directly available inside the module, can use
// this module's symbol resolver
// typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])`
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Subscript {value, slice, ..} if {
if let ast::ExprKind::Name {id, ..} = &value.node {
id == "Generic"
} else { false }
} => {
match &slice.node {
// `class Foo(Generic[T, V, P, ImportedModule.T]):`
ast::ExprKind::Tuple {elts, ..} => {
for e in elts {
// TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?)
match &e.node {
ast::ExprKind::Name {id, ..} => {
// the def_list
type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?);
// the TypeEnum of the class
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
unimplemented!()
},
_ => unimplemented!()
}
}
},
// `class Foo(Generic[T]):`
ast::ExprKind::Name {id, ..} => {
// the def_list
type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?);
// the TypeEnum of the class
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
unimplemented!()
},
// `class Foo(Generic[ImportedModule.T])`
ast::ExprKind::Attribute {value, attr, ..} => {
// TODO:
unimplemented!()
},
_ => return Err("not supported".into()) // NOTE: it is really all the supported cases?
};
},
// base class, name directly available inside the
// module, can use this module's symbol resolver
ast::ExprKind::Name {id, ..} => {
let def_id = resolver.get_identifier_def(id);
unimplemented!()
// the definition list
ancestors.push(def_id);
},
// things can be like `class A(BaseModule.Base)`, here we have to
// get the symbol resolver of the module `BaseModule`?
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
// symbol resolver of the module `BaseModule`?
ast::ExprKind::Attribute {value, attr, ..} => {
// need to change symbol resolver in order to get the symbol
// resolver of the imported module
unimplemented!()
},
// typevars bounded to the class, things like
// `class A(Generic[T, V])`
ast::ExprKind::Subscript {value, slice, ..} => {
if let ast::ExprKind::Name {id, ..} = &value.node {
if id == "Generic" {
// TODO: get typevars
unimplemented!()
} else {
return Err("unknown type var".into())
}
}
if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
let def_id = base_module_resolver.get_identifier_def(attr);
// the definition list
ancestors.push(def_id);
} else { return Err("unkown imported module".into()) }
} else { return Err("unkown imported module".into()) }
},
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
ast::ExprKind::Subscript {value, slice, ..} => {
unimplemented!()
},
_ => return Err("not supported".into())
}
}
// class method and field are analyzed by looking into the class body ast node
// ----------- class method and field are analyzed by looking into the class body ast node -----------
for stmt in body {
unimplemented!()
if let ast::StmtKind::FunctionDef {
name,
args,
body,
returns,
..
} = &stmt.node {
} else { }
// do nothing. we do not care about things like this?
// class A:
// a = 3
// b = [2, 3]
}
},
// top level function definition
ast::StmtKind::FunctionDef {
name,
args,
@ -320,3 +453,33 @@ impl<'a> TopLevelComposer<'a> {
Ok(())
}
}
pub fn parse_type_var<T>(input: &ast::Expr<T>, resolver: &dyn SymbolResolver) -> Result<Type, String> {
match &input.node {
ast::ExprKind::Name {id, ..} => {
resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable identifer".to_string())
},
ast::ExprKind::Attribute {value, attr, ..} => {
if let ast::ExprKind::Name {id, ..} = &value.node {
let next_resolver = resolver.get_module_resolver(id).ok_or_else(|| "unknown imported module".to_string())?;
next_resolver.get_symbol_type(attr).ok_or_else(|| "unknown type variable identifer".to_string())
} else {
unimplemented!()
// recursively resolve attr thing, FIXME: new problem: how do we handle this?
// # A.py
// class A:
// T = TypeVar('T', int, bool)
// pass
// # B.py
// import A
// class B(Generic[A.A.T]):
// pass
}
},
_ => Err("not supported".into())
}
}

View File

@ -6,4 +6,6 @@ in
buildInputs = with pkgs; [
llvm_10 clang_10 cargo rustc libffi libxml2 clippy
];
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
}