diff --git a/nac3core/src/symbol_resolver.rs b/nac3core/src/symbol_resolver.rs index 7d34423f..8efcd435 100644 --- a/nac3core/src/symbol_resolver.rs +++ b/nac3core/src/symbol_resolver.rs @@ -1,6 +1,6 @@ use crate::location::Location; -use crate::typecheck::typedef::Type; use crate::top_level::DefinitionId; +use crate::typecheck::typedef::Type; use rustpython_parser::ast::Expr; #[derive(Clone, PartialEq)] @@ -21,5 +21,5 @@ pub trait SymbolResolver { fn get_symbol_value(&self, str: &str) -> Option; fn get_symbol_location(&self, str: &str) -> Option; fn get_module_resolver(&self, module_name: &str) -> Option<&dyn SymbolResolver>; // NOTE: for getting imported modules' symbol resolver? - // handle function call etc. + // handle function call etc. } diff --git a/nac3core/src/top_level.rs b/nac3core/src/top_level.rs index f1ace2d9..9c607955 100644 --- a/nac3core/src/top_level.rs +++ b/nac3core/src/top_level.rs @@ -1,3 +1,4 @@ +use std::borrow::Borrow; use std::{collections::HashMap, sync::Arc}; use super::typecheck::type_inferencer::PrimitiveStore; @@ -22,6 +23,8 @@ pub enum TopLevelDef { methods: Vec<(String, Type, DefinitionId)>, // ancestor classes, including itself. ancestors: Vec, + // symbol resolver of the module defined the class, none if it is built-in type + resolver: Option>>, }, Function { // prefix for symbol, should be unique globally, and not ending with numbers @@ -40,6 +43,8 @@ pub enum TopLevelDef { /// Value: AST annotated with types together with a unification table index. Could contain /// rigid type variables that would be substituted when the function is instantiated. instance_to_stmt: HashMap>, usize)>, + // symbol resolver of the module defined the class + resolver: Option>>, }, Initializer { class_id: DefinitionId, @@ -52,22 +57,28 @@ pub struct TopLevelContext { pub conetexts: Arc>>>, } -pub struct TopLevelDefInfo<'a> { - // like adding some info on top of the TopLevelDef for later parsing the class bases, method, - // and function sigatures - def: TopLevelDef, // the definition entry - ty: Type, // the entry in the top_level unifier - ast: Option>, // the ast submitted by applications - resolver: Option<&'a dyn SymbolResolver>, // the resolver +pub fn name_mangling(mut class_name: String, method_name: &str) -> String { + // need to further extend to more name mangling like instantiations of typevar + class_name.push_str(method_name); + class_name } -pub struct TopLevelComposer<'a> { - pub definition_list: Vec>, +pub struct TopLevelDefInfo { + // like adding some info on top of the TopLevelDef for later parsing the class bases, method, + // and function sigatures + def: TopLevelDef, // the definition entry + ty: Type, // the entry in the top_level unifier + ast: Option>, // the ast submitted by applications, primitives and class methods will have None value here + // resolver: Option<&'a dyn SymbolResolver> // the resolver +} + +pub struct TopLevelComposer { + pub definition_list: Vec, pub primitives: PrimitiveStore, pub unifier: Unifier, } -impl<'a> TopLevelComposer<'a> { +impl TopLevelComposer { pub fn make_primitives() -> (PrimitiveStore, Unifier) { let mut unifier = Unifier::new(); let int32 = unifier.add_ty(TypeEnum::TObj { @@ -102,101 +113,145 @@ impl<'a> TopLevelComposer<'a> { pub fn new() -> Self { let primitives = Self::make_primitives(); - let definition_list: Vec> = vec![ + let definition_list: Vec = vec![ TopLevelDefInfo { - def: Self::make_top_level_class_def(0), + def: Self::make_top_level_class_def(0, None), ast: None, - resolver: None, ty: primitives.0.int32, }, TopLevelDefInfo { - def: Self::make_top_level_class_def(1), + def: Self::make_top_level_class_def(1, None), ast: None, - resolver: None, ty: primitives.0.int64, }, TopLevelDefInfo { - def: Self::make_top_level_class_def(2), + def: Self::make_top_level_class_def(2, None), ast: None, - resolver: None, ty: primitives.0.float, }, TopLevelDefInfo { - def: Self::make_top_level_class_def(3), + def: Self::make_top_level_class_def(3, None), ast: None, - resolver: None, ty: primitives.0.bool, }, TopLevelDefInfo { - def: Self::make_top_level_class_def(4), + def: Self::make_top_level_class_def(4, None), ast: None, - resolver: None, ty: primitives.0.none, }, ]; // the entries for primitive types TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 } } - pub fn make_top_level_class_def(index: usize) -> TopLevelDef { + /// already include the definition_id of itself inside the ancestors vector + pub fn make_top_level_class_def( + index: usize, + resolver: Option>>, + ) -> TopLevelDef { TopLevelDef::Class { object_id: DefinitionId(index), type_vars: Default::default(), fields: Default::default(), methods: Default::default(), - ancestors: Default::default(), + ancestors: vec![DefinitionId(index)], + resolver, } } - pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef { + + pub fn make_top_level_function_def( + name: String, + ty: Type, + resolver: Option>>, + ) -> TopLevelDef { TopLevelDef::Function { name, signature: ty, instance_to_symbol: Default::default(), instance_to_stmt: Default::default(), + resolver, } } - // like to make and return a "primitive" symbol resolver? so that the symbol resolver can later - // figure out primitive type definitions when passed a primitive type name + // like to make and return a "primitive" symbol resolver? so that the symbol resolver + // can later figure out primitive type definitions when passed a primitive type name pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> { vec![ ("int32".into(), DefinitionId(0), self.primitives.int32), - ("int64".into(), DefinitionId(0), self.primitives.int32), - ("float".into(), DefinitionId(0), self.primitives.int32), - ("bool".into(), DefinitionId(0), self.primitives.int32), - ("none".into(), DefinitionId(0), self.primitives.int32), + ("int64".into(), DefinitionId(1), self.primitives.int64), + ("float".into(), DefinitionId(2), self.primitives.float), + ("bool".into(), DefinitionId(3), self.primitives.bool), + ("none".into(), DefinitionId(4), self.primitives.none), ] } pub fn register_top_level( &mut self, ast: ast::Stmt<()>, - resolver: &'a dyn SymbolResolver, + resolver: Option>>, ) -> Result, String> { match &ast.node { ast::StmtKind::ClassDef { name, body, .. } => { let class_name = name.to_string(); - let def_id = self.definition_list.len(); + let class_def_id = self.definition_list.len(); + // add the class to the unifier let ty = self.unifier.add_ty(TypeEnum::TObj { - obj_id: DefinitionId(def_id), + obj_id: DefinitionId(class_def_id), fields: Default::default(), params: Default::default(), }); + + let mut ret_vector: Vec<(String, DefinitionId, Type)> = + vec![(class_name.clone(), DefinitionId(class_def_id), ty)]; + // parse class def body and register class methods into the def list + // NOTE: module's symbol resolver would not know the name of the class methods, + // thus cannot return their definition_id? so we have to manage it ourselves? + // or do we return the class method list of (method_name, def_id, type) to + // application to be used to build symbol resolver? <- current implementation + // FIXME: better do not return and let symbol resolver to manage the mangled name + for b in body { + if let ast::StmtKind::FunctionDef { name, .. } = &b.node { + let fun_name = name_mangling(class_name.clone(), name); + let def_id = self.definition_list.len(); + // add to unifier + let ty = self.unifier.add_ty(TypeEnum::TFunc( + crate::typecheck::typedef::FunSignature { + args: Default::default(), + ret: self.primitives.none, + vars: Default::default(), + }, + )); + // add to the definition list + self.definition_list.push(TopLevelDefInfo { + def: Self::make_top_level_function_def(fun_name.clone(), ty, None), // FIXME: + ty, + ast: None, // since it is inside the class def body statments + }); + ret_vector.push((fun_name, DefinitionId(def_id), ty)); + + // if it is the contructor, special handling is needed. In the above + // handling, we still add __init__ function to the class method + if name == "__init__" { + self.definition_list.push(TopLevelDefInfo { + def: TopLevelDef::Initializer { + class_id: DefinitionId(class_def_id), + }, + ty: self.primitives.none, // arbitary picked one + ast: None, // it is inside the class def body statments + }) + // FIXME: should we return this to the symbol resolver?, should be yes + } + } else { + } // else do nothing + } // add to the definition list self.definition_list.push(TopLevelDefInfo { - def: Self::make_top_level_class_def(def_id), - resolver: Some(resolver), + def: Self::make_top_level_class_def(class_def_id, resolver), ast: Some(ast), ty, }); - // TODO: parse class def body and register class methods into the def list? - // FIXME: module's symbol resolver would not know the name of the class methods, - // thus cannot return their definition_id? so we have to manage it ourselves? or - // do we return the class method list of (method_name, def_id, type) to application - // to be used to build symbol resolver? <- current implementation - - Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def + Ok(ret_vector) } ast::StmtKind::FunctionDef { name, .. } => { @@ -206,16 +261,16 @@ impl<'a> TopLevelComposer<'a> { let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature { args: Default::default(), - ret: self.primitives.none, // NOTE: this needs to be changed later + ret: self.primitives.none, vars: Default::default(), })); // add to the definition list self.definition_list.push(TopLevelDefInfo { def: Self::make_top_level_function_def( name.into(), - self.primitives.none, // NOTE: this needs to be changed later + self.primitives.none, + resolver, ), - resolver: Some(resolver), ast: Some(ast), ty, }); @@ -230,53 +285,143 @@ impl<'a> TopLevelComposer<'a> { /// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one pub fn analyze_top_level(&mut self) -> Result<(), String> { for mut d in &mut self.definition_list { - if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) { + if let Some(ast) = &d.ast { match &ast.node { ast::StmtKind::ClassDef { - name, bases, body, .. } => { + // get the mutable reference of the entry in the definition list, get the `TopLevelDef` + let (_, + ancestors, + fields, + methods, + type_vars, + // resolver, + ) = if let TopLevelDef::Class { + object_id, + ancestors, + fields, + methods, + type_vars, + resolver + } = &mut d.def { + (object_id, ancestors, fields, methods, type_vars) // FIXME: this unwrap is not safe + } else { unreachable!() }; + + // try to get mutable reference of the entry in the unification table, get the `TypeEnum` + let (params, + fields + ) = if let TypeEnum::TObj { + params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id? + fields, + .. + } = self.unifier.get_ty(d.ty).borrow() { + (params, fields) + } else { unreachable!() }; + // ancestors and typevars associate with the class are analyzed by looking // into the `bases` ast node for b in bases { match &b.node { - // base class, name directly available inside the module, can use - // this module's symbol resolver - ast::ExprKind::Name {id, ..} => { - let def_id = resolver.get_identifier_def(id); - unimplemented!() - }, - // things can be like `class A(BaseModule.Base)`, here we have to - // get the symbol resolver of the module `BaseModule`? - ast::ExprKind::Attribute {value, attr, ..} => { - // need to change symbol resolver in order to get the symbol - // resolver of the imported module - unimplemented!() - }, - // typevars bounded to the class, things like - // `class A(Generic[T, V])` - ast::ExprKind::Subscript {value, slice, ..} => { + // typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])` + // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params + ast::ExprKind::Subscript {value, slice, ..} if { if let ast::ExprKind::Name {id, ..} = &value.node { - if id == "Generic" { - // TODO: get typevars + id == "Generic" + } else { false } + } => { + match &slice.node { + // `class Foo(Generic[T, V, P, ImportedModule.T]):` + ast::ExprKind::Tuple {elts, ..} => { + for e in elts { + // TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?) + match &e.node { + ast::ExprKind::Name {id, ..} => { + // the def_list + // type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME: + + // the TypeEnum of the class + // FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be? + unimplemented!() + }, + + _ => unimplemented!() + } + } + }, + + // `class Foo(Generic[T]):` + ast::ExprKind::Name {id, ..} => { + // the def_list + // type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME: + + // the TypeEnum of the class + // FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be? unimplemented!() - } else { - return Err("unknown type var".into()) - } - } + }, + + // `class Foo(Generic[ImportedModule.T])` + ast::ExprKind::Attribute {value, attr, ..} => { + // TODO: + unimplemented!() + }, + + _ => return Err("not supported".into()) // NOTE: it is really all the supported cases? + }; + }, + + // base class, name directly available inside the + // module, can use this module's symbol resolver + ast::ExprKind::Name {id, ..} => { + // let def_id = resolver.get_identifier_def(id); FIXME: + // the definition list + // ancestors.push(def_id); + }, + + // base class, things can be like `class A(BaseModule.Base)`, here we have to get the + // symbol resolver of the module `BaseModule`? + ast::ExprKind::Attribute {value, attr, ..} => { + if let ast::ExprKind::Name {id, ..} = &value.node { + // if let Some(base_module_resolver) = resolver.get_module_resolver(id) { + // let def_id = base_module_resolver.get_identifier_def(attr); + // // the definition list + // ancestors.push(def_id); + // } else { return Err("unkown imported module".into()) } FIXME: + } else { return Err("unkown imported module".into()) } + }, + + // `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables + ast::ExprKind::Subscript {value, slice, ..} => { + unimplemented!() }, _ => return Err("not supported".into()) } } - // class method and field are analyzed by looking into the class body ast node + // class method and field are analyzed by + // looking into the class body ast node for stmt in body { - unimplemented!() + if let ast::StmtKind::FunctionDef { + name, + args, + body, + returns, + .. + } = &stmt.node { + + } else { } + // do nothing. we do not care about things like this? + // class A: + // a = 3 + // b = [2, 3] + + } }, + // top level function definition ast::StmtKind::FunctionDef { name, args, @@ -294,3 +439,38 @@ impl<'a> TopLevelComposer<'a> { Ok(()) } } + +pub fn parse_type_var( + input: &ast::Expr, + resolver: &dyn SymbolResolver, +) -> Result { + match &input.node { + ast::ExprKind::Name { id, .. } => resolver + .get_symbol_type(id) + .ok_or_else(|| "unknown type variable identifer".to_string()), + + ast::ExprKind::Attribute { value, attr, .. } => { + if let ast::ExprKind::Name { id, .. } = &value.node { + let next_resolver = resolver + .get_module_resolver(id) + .ok_or_else(|| "unknown imported module".to_string())?; + next_resolver + .get_symbol_type(attr) + .ok_or_else(|| "unknown type variable identifer".to_string()) + } else { + unimplemented!() + // recursively resolve attr thing, FIXME: new problem: how do we handle this? + // # A.py + // class A: + // T = TypeVar('T', int, bool) + // pass + // # B.py + // import A + // class B(Generic[A.A.T]): + // pass + } + } + + _ => Err("not supported".into()), + } +} diff --git a/nac3core/src/typecheck/magic_methods.rs b/nac3core/src/typecheck/magic_methods.rs index 9d374394..29615aa2 100644 --- a/nac3core/src/typecheck/magic_methods.rs +++ b/nac3core/src/typecheck/magic_methods.rs @@ -1,8 +1,11 @@ +use crate::typecheck::{ + type_inferencer::*, + typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier}, +}; +use rustpython_parser::ast; +use rustpython_parser::ast::{Cmpop, Operator, Unaryop}; use std::borrow::Borrow; use std::collections::HashMap; -use rustpython_parser::ast::{Cmpop, Operator, Unaryop}; -use crate::typecheck::{type_inferencer::*, typedef::{FunSignature, FuncArg, TypeEnum, Unifier, Type}}; -use rustpython_parser::ast; pub fn binop_name(op: &Operator) -> &'static str { match op { @@ -42,206 +45,218 @@ pub fn binop_assign_name(op: &Operator) -> &'static str { pub fn unaryop_name(op: &Unaryop) -> &'static str { match op { - Unaryop::UAdd => "__pos__", - Unaryop::USub => "__neg__", - Unaryop::Not => "__not__", + Unaryop::UAdd => "__pos__", + Unaryop::USub => "__neg__", + Unaryop::Not => "__not__", Unaryop::Invert => "__inv__", } } pub fn comparison_name(op: &Cmpop) -> Option<&'static str> { match op { - Cmpop::Lt => Some("__lt__"), - Cmpop::LtE => Some("__le__"), - Cmpop::Gt => Some("__gt__"), - Cmpop::GtE => Some("__ge__"), - Cmpop::Eq => Some("__eq__"), + Cmpop::Lt => Some("__lt__"), + Cmpop::LtE => Some("__le__"), + Cmpop::Gt => Some("__gt__"), + Cmpop::GtE => Some("__ge__"), + Cmpop::Eq => Some("__eq__"), Cmpop::NotEq => Some("__ne__"), _ => None, } } -pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type, ops: &[ast::Operator]) { - if let TypeEnum::TObj {fields, ..} = unifier.get_ty(ty).borrow() { +pub fn impl_binop( + unifier: &mut Unifier, + _store: &PrimitiveStore, + ty: Type, + other_ty: &[Type], + ret_ty: Type, + ops: &[ast::Operator], +) { + if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { for op in ops { - fields.borrow_mut().insert( - binop_name(op).into(), - { - let other = if other_ty.len() == 1 { - other_ty[0] - } else { - unifier.get_fresh_var_with_range(other_ty).0 - }; - unifier.add_ty(TypeEnum::TFunc(FunSignature { - ret: ret_ty, - vars: HashMap::new(), - args: vec![FuncArg { - ty: other, - default_value: None, - name: "other".into() - }] - })) - } - ); + fields.borrow_mut().insert(binop_name(op).into(), { + let other = if other_ty.len() == 1 { + other_ty[0] + } else { + unifier.get_fresh_var_with_range(other_ty).0 + }; + unifier.add_ty(TypeEnum::TFunc(FunSignature { + ret: ret_ty, + vars: HashMap::new(), + args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }], + })) + }); - fields.borrow_mut().insert( - binop_assign_name(op).into(), - { - let other = if other_ty.len() == 1 { - other_ty[0] - } else { - unifier.get_fresh_var_with_range(other_ty).0 - }; - unifier.add_ty(TypeEnum::TFunc(FunSignature { - ret: ret_ty, - vars: HashMap::new(), - args: vec![FuncArg { - ty: other, - default_value: None, - name: "other".into() - }] - })) - } - ); + fields.borrow_mut().insert(binop_assign_name(op).into(), { + let other = if other_ty.len() == 1 { + other_ty[0] + } else { + unifier.get_fresh_var_with_range(other_ty).0 + }; + unifier.add_ty(TypeEnum::TFunc(FunSignature { + ret: ret_ty, + vars: HashMap::new(), + args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }], + })) + }); } - } else { unreachable!("") } + } else { + unreachable!("") + } } -pub fn impl_unaryop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Type, ops: &[ast::Unaryop]) { - if let TypeEnum::TObj {fields, ..} = unifier.get_ty(ty).borrow() { +pub fn impl_unaryop( + unifier: &mut Unifier, + _store: &PrimitiveStore, + ty: Type, + ret_ty: Type, + ops: &[ast::Unaryop], +) { + if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { for op in ops { fields.borrow_mut().insert( unaryop_name(op).into(), unifier.add_ty(TypeEnum::TFunc(FunSignature { ret: ret_ty, vars: HashMap::new(), - args: vec![] - })) + args: vec![], + })), ); } - } else { unreachable!() } + } else { + unreachable!() + } } -pub fn impl_cmpop(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type, ops: &[ast::Cmpop]) { - if let TypeEnum::TObj {fields, ..} = unifier.get_ty(ty).borrow() { +pub fn impl_cmpop( + unifier: &mut Unifier, + store: &PrimitiveStore, + ty: Type, + other_ty: Type, + ops: &[ast::Cmpop], +) { + if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { for op in ops { fields.borrow_mut().insert( comparison_name(op).unwrap().into(), unifier.add_ty(TypeEnum::TFunc(FunSignature { ret: store.bool, vars: HashMap::new(), - args: vec![FuncArg { - ty: other_ty, - default_value: None, - name: "other".into() - }] - })) + args: vec![FuncArg { ty: other_ty, default_value: None, name: "other".into() }], + })), ); } - } else { unreachable!() } + } else { + unreachable!() + } } /// Add, Sub, Mult, Pow -pub fn impl_basic_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { - impl_binop(unifier, store, ty, other_ty, ret_ty, &[ - ast::Operator::Add, - ast::Operator::Sub, - ast::Operator::Mult, - ]) +pub fn impl_basic_arithmetic( + unifier: &mut Unifier, + store: &PrimitiveStore, + ty: Type, + other_ty: &[Type], + ret_ty: Type, +) { + impl_binop( + unifier, + store, + ty, + other_ty, + ret_ty, + &[ast::Operator::Add, ast::Operator::Sub, ast::Operator::Mult], + ) } -pub fn impl_pow(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { - impl_binop(unifier, store, ty, other_ty, ret_ty, &[ - ast::Operator::Pow, - ]) +pub fn impl_pow( + unifier: &mut Unifier, + store: &PrimitiveStore, + ty: Type, + other_ty: &[Type], + ret_ty: Type, +) { + impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Pow]) } /// BitOr, BitXor, BitAnd pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_binop(unifier, store, ty, &[ty], ty, &[ - ast::Operator::BitAnd, - ast::Operator::BitOr, - ast::Operator::BitXor, - ]) + impl_binop( + unifier, + store, + ty, + &[ty], + ty, + &[ast::Operator::BitAnd, ast::Operator::BitOr, ast::Operator::BitXor], + ) } /// LShift, RShift pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_binop(unifier, store, ty, &[ty], ty, &[ - ast::Operator::LShift, - ast::Operator::RShift, - ]) + impl_binop(unifier, store, ty, &[ty], ty, &[ast::Operator::LShift, ast::Operator::RShift]) } /// Div pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) { - impl_binop(unifier, store, ty, other_ty, store.float, &[ - ast::Operator::Div, - ]) + impl_binop(unifier, store, ty, other_ty, store.float, &[ast::Operator::Div]) } /// FloorDiv -pub fn impl_floordiv(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { - impl_binop(unifier, store, ty, other_ty, ret_ty, &[ - ast::Operator::FloorDiv, - ]) +pub fn impl_floordiv( + unifier: &mut Unifier, + store: &PrimitiveStore, + ty: Type, + other_ty: &[Type], + ret_ty: Type, +) { + impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::FloorDiv]) } /// Mod -pub fn impl_mod(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { - impl_binop(unifier, store, ty, other_ty, ret_ty, &[ - ast::Operator::Mod, - ]) +pub fn impl_mod( + unifier: &mut Unifier, + store: &PrimitiveStore, + ty: Type, + other_ty: &[Type], + ret_ty: Type, +) { + impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Mod]) } /// UAdd, USub pub fn impl_sign(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_unaryop(unifier, store, ty, ty, &[ - ast::Unaryop::UAdd, - ast::Unaryop::USub, - ]) + impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::UAdd, ast::Unaryop::USub]) } /// Invert pub fn impl_invert(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_unaryop(unifier, store, ty, ty, &[ - ast::Unaryop::Invert, - ]) + impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::Invert]) } /// Not pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_unaryop(unifier, store, ty, store.bool, &[ - ast::Unaryop::Not, - ]) + impl_unaryop(unifier, store, ty, store.bool, &[ast::Unaryop::Not]) } /// Lt, LtE, Gt, GtE pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) { - impl_cmpop(unifier, store, ty, other_ty, &[ - ast::Cmpop::Lt, - ast::Cmpop::Gt, - ast::Cmpop::LtE, - ast::Cmpop::GtE, - ]) + impl_cmpop( + unifier, + store, + ty, + other_ty, + &[ast::Cmpop::Lt, ast::Cmpop::Gt, ast::Cmpop::LtE, ast::Cmpop::GtE], + ) } /// Eq, NotEq pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { - impl_cmpop(unifier, store, ty, ty, &[ - ast::Cmpop::Eq, - ast::Cmpop::NotEq, - ]) + impl_cmpop(unifier, store, ty, ty, &[ast::Cmpop::Eq, ast::Cmpop::NotEq]) } pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) { - let PrimitiveStore { - int32: int32_t, - int64: int64_t, - float: float_t, - bool: bool_t, - .. - } = *store; + let PrimitiveStore { int32: int32_t, int64: int64_t, float: float_t, bool: bool_t, .. } = + *store; /* int32 ======== */ impl_basic_arithmetic(unifier, store, int32_t, &[int32_t], int32_t); impl_pow(unifier, store, int32_t, &[int32_t], int32_t); diff --git a/nac3core/src/typecheck/type_inferencer/mod.rs b/nac3core/src/typecheck/type_inferencer/mod.rs index 7f5bcbc8..d81c0d02 100644 --- a/nac3core/src/typecheck/type_inferencer/mod.rs +++ b/nac3core/src/typecheck/type_inferencer/mod.rs @@ -38,7 +38,7 @@ pub struct PrimitiveStore { } pub struct FunctionData { - pub resolver: Box, + pub resolver: Arc, pub return_type: Option, pub bound_variables: Vec, } diff --git a/nac3core/src/typecheck/type_inferencer/test.rs b/nac3core/src/typecheck/type_inferencer/test.rs index f4d2cd8d..44775c80 100644 --- a/nac3core/src/typecheck/type_inferencer/test.rs +++ b/nac3core/src/typecheck/type_inferencer/test.rs @@ -100,10 +100,10 @@ impl TestEnvironment { let mut identifier_mapping = HashMap::new(); identifier_mapping.insert("None".into(), none); - let resolver = Box::new(Resolver { + let resolver = Arc::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names: Default::default(), - }) as Box; + }) as Arc; TestEnvironment { unifier, @@ -226,8 +226,8 @@ impl TestEnvironment { .collect(); let resolver = - Box::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names }) - as Box; + Arc::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names }) + as Arc; TestEnvironment { unifier,